Bitki gelişiminde fosfat çözücü bakterilerin önemi

Fosfor bitki gelişmesini sınırlayan temel elementlerdendir. Toprakta genellikle çözünemez formda olduğu için yüksek verim için alınabilir P genellikle yetersizdir. Gübre olarak uygulanan inorganik fosforun da büyük bir kısmı uygulamadan sonra bitkilerce alınamaz şekle dönüşmektedir. Fosfor noksanlığının karşılanması için yoğun gübre kullanımı, yüksek maliyet ve çevre sorunlarına neden olmaktadır. Tarımda kimyasal gübre kullanımının azaltılması için mikroorganizmaların kullanımı önemlidir. Biyolojik gübrelerin rolünün artması ve yaygınlaşması, kimyasal gübre gereksinimini ve gübrelerin çevresel olumsuz etkilerini azaltacaktır. Bir çok bakteri organik asit üretimi veya diğer mekanizmalarla inorganik ve organik fosfatın çözünürlüğünü artırmakta ve bitkiler için alınabilir forma dönüştürmektedir. Mineral fosfat çözünürlüğünün temel mekanizması organik asit üretimi olurken, asitfosfataz organik fosforun mineralizasyonunda önemli rol oynamaktadır. Fosfat biyolojik gübrelemesinde başarı inokulumun kalitesi, bitki çeşidi, kültür koşulları, toprak özellikleri, sıcaklık, nem rejimi, toprak yapısı, aşılama ve uygulama tekniği, kullanılabilir maddelerin alınabilirliği ve gübreleme düzeyine bağlıdır. Bu derlemede biyolojik gübre etmeni olarak bitki gelişmesini teşvik eden bakterilerin (PGPR) çok yüksek bir potansiyele sahip olduğu, çeşitli bitki, iklim ve toprak koşullarında faydalı olabileceği ortaya konulmuştur. Özellikle PGPR tarafından, bitkisel hormonsal maddelerin, bitki tarafından hormon üretimini azaltıcı enzimlerin veflavonoid maddelerin üretimi, kökyüzey alanını artırarak kök gelişmesini ve morfolojisini değiştirme, besin alımını ve ortak yaşam ilişkilerini etkileyen mekanizmaların tam olarak açıklığa kavuşturulması gereklidir.

Posphate solubilizing bacteria and their role in plant growth promotion

Phosphorus is one of the major plant.nutrients limiting plant growth. Available P is generally not sufficient maximum crop yields because most P in soils exists in insoluble forms. A large portion of inorganic phosphates applied to soil as fertilizer is rapidly immobilized after application and becomes unavailable to plants. Large quantities of chemical fertilizes are used to replenish soil N and P, resulting in high costs and severe environmental contamination. In agriculture, it is important to make full use of microorganisms in order to reduce the use of chemical fertilizers as much as possible. Increasing and extending the role of biyofertilizers would reduce the need for chemical fertilizers and decrease adverse environmental effects. Several bacteria may also solubilize inorganic phosphate, making soil phosphorus other wise remaining fixed available to the plants due to excretion of organic acids and through other mechanisms. The principal mechanism for mineral phosphate solubilization is the production of organic acids, and acid phosphatases play a major role in the mineralization of organic phosphorous in soil. The success of biofertilizer inoculum depennds various factors such as quality of inoclum, crops and cultivars, temperature, moisture regimes, soil composition, inoculation and application technique, available of the utilizable substrates and level of fertilization. This reviev has shown that there is huge potential for use of PGPR as biofertilizing agents for a wide variety of crop plants in a wide range of climatic and edaphic conditions. In particularly, researches must be investigate the phytohormone production by PGPR, production of enzymes which decrease phytohormone productionoby the host, root development and morphology resulting in greater root surface area for the absorption of nutrients or enhance host-symbiont relationships.

___

  • Abd-Alla, M.H. 1994. Use of organic phosphorus by Rhizobium leguminosarum biovar. viceae phosphatases. Biol Fertil Soils 18, 216–218.
  • Alagawadi A. R. and Gaur A. C. 1992. Inoculation of Azospirillum brasilense and phosphatesolubilizing bacteria on yield of sorghum (Sorghum bicolour L. Moench) in dry land. Trop Agric 69, 347–350.
  • Amer, G. A. and Utkheda, R. S. 2000. Development of formulation of biologica agents for management of root rots of lettuce and cucumber. Can J Microbiol 46, 809-816.
  • Antoun, H., Beauchamp, C.J., Goussard, N., Chabot, R. And Lalande, R. 1998. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204, 57-67.
  • Arora D. and Gaur, C. 1979. Microbial solubilization of different inorganic phosphates. Indian J Exp Biol 17,1258–1261.
  • Arshad, M. and Frankenberger, W.T.Jr., 1998. Plant growth-regulating substances in the rhizosphere. Microbial production and functions. Adv Argon 62, 46-151.
  • Babu-Khan S., Yeo, T.C., Martin, W.L., Duron, M.R., Rogers, R.D. and Goldstein, A.H. 1995. Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol 61, 972–978.
  • Baldani, V.L.D. Baldani J.I. and Döbereiner, J. 1987. Inoculation on field-grown wheat (Triticum aestivum) with Azospirillum spp. in Brazil. Biol Fert Soils 4, 37–40.
  • Banik, S. and Dey, B.K., 1982. Available phosphate content of an alluvial soil is influenced by inoculation of some isolated phosphatesolubilizing microorganisms. Plant Soil 69, 353– 364.
  • Banik, S. and Ninawe, A., 1988. Phosphate solubilising microorganism in water and sediments of a tropical estuary and the adjacent coastal Arabian Sea, in relation to there physicochemical properties. J Indian Soc Coast Agric Res 6, 75–83.
  • Bapat, S., and Shah, A. K. 2000. Biologıcal control of fusarial wilt of pigeon pea by Bacillus brevis. Can J Microbiol 46, 125-132.
  • Barazani O., Friedman J., 1999. Is IAA the major root growth factor secreted from plant-growthmediating bacteria? J Chem Ecol, 25, 2397-2406.
  • Bashan, Y. and Levanony, H. 1991. Alterations in membrane potential and in proton efflux in plant roots induced by Azospirillum brasilense. Plant Soil 137, 99–103.
  • Bashan, Y., Harrison, S. K. and Whitmoyer, R. E. 1990. Enhanced growth of wheat ad soybean plants inoculated with Azospirillum brasilense is not necessarily due to general enhancement of mineral uptake. Appl Environ Microbiol 56, 769-775.
  • Bashan; Y., Puenta, M.E., Rodrique, M.N., Toledo, G., Holguin, G., Ferrera-Cerrato, R. and Pedrin S., 1995. Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Appl Environ Microbiol 61, 1938-1945.
  • Belimov, A. A., Kojemiakov, P. A. and Chuvarliyeva, C. V. 1995. Interaction between barley and mixed cultures of nitrogen fixing and phosphatesolubilizing bacteria. Plant Soil 173, 29–37.
  • Belimov, A.A., Safronova, V.I., Sergeyeva, T.A., Egorova, T.N., Matveyeva, V.A., Tsyganov, V.E., Borisov, A.Y., Tikhonovich, I.A., Kluge, C., Preisfeld, A., Dietz, K.J., Stepanok, V.V., 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol, 47, 642-652.
  • Bent, E., Tuzun, S., Chanway, C.P., Enebak, S., 2001. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol, 47, 793-800.
  • Bishop, M.L, Chang, A.C. and Lee, R.W.K. 1994. Enzymatic mineralization of organic phosphorus in a volcanic soil in Chile. Soil Sci 157, 238–243.
  • Biswas, J. C., Ladha, J. K. and Dazzo, F. B. 2000a. Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64, 1644-1650.
  • Biswas, J. C., Ladha, J.K. Dazzo, F.B., Yani, Y.G. and Rolfe, B.G. 2000 b. Rhizobial inoculation influences seedling vigor and yield of rice. Agron. J. 92, 880-886.
  • Broadbent, P., Baker, K.F. Franks, N. and Holland, J. 1977. Effect of Bacillus spp. on incrased growth of seedlings in steamed and in nontreated soil. Phytopathology 67, 1027–1034.
  • Brown, M.E, 1974. Seed and root bacterization. Annu Rev Phytopatol 12,181–197.
  • Burr, T.J. Schroth M.N. and Suslow, T. 1978. Increased potato yields by treatment of seedpieces with specific strains of Pseudomonas fluorescens and Pseudomonas putida.. Phytopathology, 68, 1377–1383.
  • Çakmakçı, R., 2002. Azot Fiksasyonu ve Fosfat Çözücü Bakteri Aşılamalarının Şeker Pancarı Verim ve Kalitesine Etkisi. II. Şeker Pancarı Üret. Semp., 257-270.
  • Çakmakçı, R., Kantar, F. and Algur, Ö.F. 1999. Sugar beet and barley yield in relation to Bacillus polymxa and Bacillus megaterium var. Phosphaticum inoculation. J Plant Nutr Soil Sci, 162, 437-442.
  • Çakmakçı, R., Kantar, F.and Şahin, F. 2001. Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. J Plant Nutr Soil Sci, 164, 527-531.
  • Çakmakçı, R, Şahin F., Kantar F. 2003. Tek başına ve birlikte azot fiksasyonu ve fosfat çözücü bakteri aşlamalarının şeker pancarı verim ve kalitesine etkisi. Türkiye 5. Tarla Bitkileri Kongresi, Diyarbakır.
  • Çakmakçı, R., Dönmez, F., Aydın, A and Şahin, F. 2004. Effect of plant growth promoting rhizobacteria on barley seedling growth, soil properties and bacterial counts. Can J Microbiol (sunuldu).
  • Capper, A.L. and Campbell, R. 1986. The effect of artificially inoculated antagonistic bacteria on the prevalence of take-all disease of wheat in field experiment. J Appl Bacteriol 60,155–160.
  • Cattelan, A.J., Hartel, P.G., Fuhrmann, J.J., 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J, 63, 1670-1680.
  • Chabot, R., Hani, A. and Cescas, P.M., 1996. Growth promotion of maize and lettuce by phosphatesolubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil. 184, 311–321.
  • Chiarini, L., Bevivino A., Tabacchioni, S. and Dalmastri, C. 1998. Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: root colonization and plant growth promotion of dual strain inocula. Soil Biol Biochem 30, 81–87.
  • Christiansen-Weneger, C. 1992. N2-fixation by ammonium-excreting Azospirillum brasilense in auxin-induced tumours of wheat (Triticum aestivum L.). Biol Fertil Soils 12, 85–100.
  • Colbert, S.F., Hendson, M., Feri, M. and Schroth M.N., 1993. Enhanced growth and activity of a biocontrol bacterium genetically engineered to utilize salicylate. Appl Environ Microbiol 59, 2071-2076.
  • Cunningham, J.E. and Kuiacak, C., 1992. Production of sitric and oxalic acids and solubilization of calcium phosphates by Penicillium bilaii. Appl Environ Microbiol, 58, 1451-1458.
  • Data, M., Banish, S. and Dupta, R.K. 1982. Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland. Plant Soil, 69, 365–373.
  • De Freitas, J.R., Banerjee, M.R., Germida, J.J., 1997. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of 358-364.
  • De La Torre, M.A., Gomez-Alarcon, G., Vizcaino, C. and Garcia, M.T., 1993. Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19, 129–147.
  • De Salamone, I.E.G., Hynes, R.K., Nelson, L.M., 2001. Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol, 47, 404-411.
  • Dey, B. K., Banik, S. and Nath, S., 1976. residual effect of organic manures on the microbial population and phosphate-solubilizing power of wheat (Triticum aestivum L.) rhizosphere soils. Indian Agric 20, 245-249.
  • Dobbelaere, S., Croonenborghs, A., Thys, A., Vande, B.A., Vanderleyden, J., 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil, 212, 155-164.
  • Döbereiner, J., 1997. Biological nitrogen fixation in the tropics: Social and economic contributions. Soil Biol Biochem, 29, 771-774.
  • Dong, Z., McCully, M.E. and Canny, M.J. 1997. Does Acetobacter diazotrophcus live and move in the xylem of sugarcane stems? Anatomical and physiological data. Ann Bot 80, 147-158.
  • Ehrlich, H.L., 1990. Mikrobiologische und biochemische Verfahrenstechnik. In: Einsele, A. Finn, R.K. and Samhaber, W. Eds., Geomicrobiology (2nd ed.), VCH Verlagsgesellschaft, Weinheim.
  • El-Sawah, M.M.A, Hauka, F.I.A. and El-Rafey, H.H. 1993. Study on some enzymes cleaving phosphorus from organic substrates in soil. J Agric Sci 18, 2775–2785.
  • Eşitken, A., Karlıdağ, H. Ercişli, S.and Sahin, F. 2002. Effect of foliar aplication of Bacillus subtilis Osu- 142 on the yield, growth and control of shot-hole disease (Corneum blight) of apricot. Gartenbauw. 67, 139-142.
  • Estevez de Jensen C. , Percich, J. A. and Graham, P. H. 2002. Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crop Res 74, 107-115.
  • Fernández, H.M., Carpena, A.O. and Cadakia, L.C. 1984. Evaluacion de la solubilizacion del fósforo mineral en suelos calizos por Bacillus cereus. Ensayos de invernadero. Anal Edaf Agrobiol 43, 235–245.
  • Fuentes-Ramirez, L.E., Cabellero,M.J., Sepulveda, J. and Martinez, R.E., 1999. Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29 117-128.
  • Fukui, R., Schroth, M. N., Hendson, M. and Hancock, J. G. and Firestone, M. K. 1994. Growth patterns and metabolic activity of Pseudomonas in sugar beet spermospheres: Relationship to pericarp colonization by Pythium ultimum. Phytopathol 84,1331-1338.
  • Gadd, G. 1999. Fungal production of citric and oxalic acid: Importance of metal specification, physiology and biogeochemical processes. Adv Microb Physiol 41, 47-92.
  • Garcia, C., Fernandez T., Costa, F., Cerranti, B. and Masciandaro, G. 1992. Kinetics of phosphatase activity in organic wastes. Soil Biol Biochem 25, 361–365.
  • Gaur, A.C. and. Ostwal, K.P., 1972. Influence of phosphate dissolving Bacilli on yield and phosphate uptake of wheat crop. Indian J Exp Biol 10, 393–394.
  • Georgakopoulos, D. G., Fiddaman, P., Leifert, C. and Malathrakis, N. E. 2002. Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. J Appl Microbiol 92, 1078-1086.
  • Germida, J.J. and Walley, F.L. 1997. Plant growthpromoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat. Biol Fertil Soil, 23, 113-120.
  • Glick, B.R, Changping, L. Sibdas, G. and Dumbroff, E.B. 1997. Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol Biochem 29, 1233–1239.
  • Glick, B.R, Penrose, D.M. and Li, J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190, 63–68.
  • Goldstein, A.H and Liu, S.T. 1987. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnology 5, 72–74.
  • Goldstein, A.H, 1986. Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Altern Agric 1, 51–57.
  • Goldstein, A.H., 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric Hort 12, 185-193.
  • Goldstein, A.H., Rogers, R.D. and Mead, G. 1993. Mining by microbe. Bio/Technology 11, 1250–1254.
  • Goyal, S., Mishra, M. M., Hooda, I. S., and Sing, R. 1992. Organic matter-microbial biomass relationships in field experiments under tropical conditions. Soil Biol biochem 24, 1081-1084.
  • Griffiths, B.S., Ritz, K., Ebblewhite, N., Dobson, G., 1999. Soil microbial community structure: Effects of substrate loading rates. Soil Biol Biochem, 31, 145-153.
  • Gutierrez, M.F.J., Ramos, S.B., Probanza, A., Mehouachi, J., Tadeo, F.R., Talon, M., 2001. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant, 111, 206-211.
  • Gyaneshwar, P., Kumar, G.N, Parekh, L.J., Poole, P.S. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil. 245, 83-93.
  • Gyaneshwar, P., Kumar, G.N., Parekh, L. J, 1998. Effect of buffering on the phosphate-solubilzing ability of microorganisms. W J Microbiol Biotchnol 14, 669-673.
  • Hadler, A.K. and Chakrabartty, P.K. 1993. Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38, 325–330.
  • Hadler, A.K., Mishra, A.K. Bhattacharyya P. and Chakrabartty, P.K. 1990. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium.. J Gen Appl Microbiol 36, 81–92.
  • Hall, J.A., Pierson, D., Ghosh S. and Glick, B.R. 1996. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr J Plant Sci 44, 37–42.
  • Han, S. O. and New, P. B. 1998. Variation in nitrogen fixing ability among natural isolates of Azospirillum. Microb Ecol 36, 193-201.
  • Handlesman, J., and Staab, E. 1996. Biocontrol of soilborne plant pathogens. Plant Cell. 8, 1855-1869.
  • Hecht-Buchholz, C., 1998. The apoplast- habitat of endophytic dinitrogen - fixing bacteria and their significance for the nitrogen nutrition of nonlegumious plants. Z. Pflanzenernähr. Bodenk. 161, 509-520.
  • Heijnen, C.E. and Van Veen, A., 1991. A determination of protective microhabitat for bacteria itroduced into soil. FEMS Microbiol Ecol 85, 73-80.
  • Holguin, G., Glick, B.R., 2001. Expression of the ACC deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense. Microbial Ecol, 41, 281-288.
  • Illmer, P. and Schinner, F. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24, 389–395.
  • Illmer, P. and Schinner, F., 1995. Solubilisation of inorganic calcium phosphates: solubilisation mechanisms. Soil Biol Biochem 27, 257–263.
  • Isopi, R., Fabbri, P., Del Gallo, M. and Puppi, G. 1995. Dual inoculation of Sorghum bicolor (L.) Moench ssp. bicolor with vesicular arbuscular mycorrhizas and Acetobacter diazotrophicus. Symbiosis 18, 43–55.
  • Iyamuremye, F. and Dick, R. P. 1996. Organic amendments and phosphorus sorption by soils. Adv Agron 56, 139–185.
  • Jjemba P.K. and Alexander, M., 1999. Possible determinants of rhizospere competence of bacteria. Soil Biol Biochem 31, 623-632.
  • Jones, D.L. and Darrah, P.R. 1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166, 247–257.
  • Kapulnik, J., Gafny, R. and Okon, Y. 1985. Effect of Azopirillum spp. inoculation on root development and NO-3 uptake in wheat (Titicum aestivum cv. Miriam) in hydroponic systems. Can J Bot 63, 627–631.
  • Kaushik, R., Saxena, A.K., Tilak, K.V.B.R., 2000. Selection of Tn5: lacZ mutants isogenic to wild type Azospirillum brasilense strains capable of growing at sub-optimal temperature. W J Microbiol Biotechnol, 16, 567-570.
  • Khan, M. R., Talukdar, N. C. and Thakuria, D. 2003. Detection of Azospirillum and PSB in rice rhizosphere soil by protein and antibiotic resistance profile and their effect on grain yield of rice. Indian J Biotec 2, 246-250.
  • Kiewnik, S., Jacobsen, B.J., Braun-Kiewnick, A., Eckhoff, J.L.A., Bergman, J.W. 2001. Integrated control of Rhizoctonia crown and root rot of sugar beet with fungicides and antagonistic bacteria. Plant Disease, 85, 718-722.
  • Kim, K. Y, Jordan D. and McDonald G. A., 1998. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: Effect of carbon sources. Soil Biol Biochem 30, 995-1003.
  • Kim, K. Y, McDonald G. A., and Jordan D., 1999. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned E. Coli in culture medium. Biol Fert Soil, 24, 347-352.
  • Kirchner, M.J., Wollum A.G. and King, L.D. 1993. Soil microbial populations and activities in reduced chemical input agroecosystems. Soil Sci Soc Amer J 57, 1289–1295.
  • Kloepper, J.W,. Lifshitz, K. and. Zablotowicz, R.M. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7, 39–43.
  • Kloepper, J.W., Lifshitz, K. and Schroth, M.N. 1988. Pseudomonas inoculants to benefit plant production. ISI Atlas Sci Anim Plant Sci, 60–64.
  • Kloepper, J.W.1994. Plant growth promoting bacteria (other systems). In: J. Okon Editor, Azospirillum/Plant Association CRC Press, Boca Raton, FL, 137–154.
  • Kremer, R. J. 1994. Determination of soil phosphatase activity using a microplate method. Comun Soil Sci Plant Anal 25, 319–325.
  • Kucey, R. M. N., Janzen, H. H. and Legett, M. E. 1989. Microbially mediated increases in plant available phophorus. Adv Agron 42, 199-228.
  • Kucharski, J., Ciecko, Z. Niewolak, T. and Niklewska-Larska, T. 1996. Activity of microrganisms in soils of different agricultural usefulness complexes fertilized with mineral nitrogen. Acta Acad Agric Tech.-Olst. 62, 25–35.
  • Kumar, V. and Narula, N. 1999. Solubilization of inoranic phosphates and growth emergence of wheat as affected by Azotobacter chrococcum. Biol Fert Soils, 28, 301-305.
  • Kundu, B.S. and Gaur, A.C. 1984. Rice responce to inoculation with N2-fixing and P-soluvilizing microorganisms. Plant Soil 79, 227–234.
  • Leisinger, K. M. 1999. Biotechnology and food security. Curr Sci 76, 488-500.
  • Lemanceau, P. 1992. Effects benefiques de rhizobacteries sur les plantes: exemple des Pseudomonas spp. fluorescent. Argon 12, 413–437.
  • Leyval, C. and Berthelin, J. 1989. Interaction between Laccaria laccata, Agrobacterium radiobacter and beech roots: Influence on P, K, Mg, and Fe mobilization from minerals and plant growth. Plant and Soil 117, 103-110.
  • Lifshitz, R., Kloepper, J.W., Kozlowski, M., Simonson, C., Carlson, J., Tipping E.M. and Zalesca, I. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Psedomonas putida under gnotobiotic conditions. Can J Microbiol 33, 390–395.
  • Lima, J. A., Nahas, E. and Gomes, A. C. 1996. Microbial populations and activities in sewage sludge and phosphate fertilizer-amended soil. Appl Soil Ecology 4, 75-82.
  • Liu, T.S., Lee, L.Y., Tai, C.Y., Hung, C.H., Chang, Y.S., Wolfram, J.H., Rogers R. and Goldstein, A.H. 1992. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101. J Bacteriol 174, 5814–5819.
  • MacDermott, T.R., 1999. Phosphorus assimilation and regulation in Rhizobia. In Nitrogen Fixation in Prokaryotes: Molecular and Cellular Biology. Ed. EW Triplett. Horizon Sci. Pres USA.
  • Marahiel, M. A., Nakano, M .M. and Zabar, P. 1993. Regulation of peptide antibiotic production in Bacillus . Mol Microbiol 7, 631-636.
  • Martyniuk, S. and Wagner G. M. 1978. Quantitative and qualitative examination of soil microflora associated with different management systems. Soil Sci 125, 343-350.
  • Mayak, S., Tirosh, T. and Glick B.R., 1999. Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul , 18, 49-53.
  • McGill, W.B. Cannon, K.R. Robertson I.A. and Cook, F.D. 1986. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can J Soil Sci 66, 1–19.
  • McGrath, J.W, Hammerschmidt, F. and Quinn, J.P. 1998. Biodegradation of phosphonomycin by Rhizobium huakuii PMY1. Appl Environ Microbiol 64,356–358.
  • McGrath, J.W., Wisdom, G.B., McMullan, G., Lrakin, M.J. and Quinn, J.P. 1995. The purification and properties of phosphonoacetate hydrolase, a novel carbon-phosphorus bond-cleaving enzyme from Pseudomonas fluorescens 23F. Eur J Biochem 234, 225–230.
  • Mehnaz, S., Mirza, M.S., Haurat, J., Bally, R., Normand, P., Bano, A. and Malik, K.A., 2001. Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47,110-117.
  • Mirza, M.S., Ahmad, W., Latif F., Haurat, J., Bally, R., Normand, P. and Malik, K.A., 2001. Isolation, partial characterization, and the effect of plant gowthpromoting bacteria (PGPB) on micropropagated sugarcane in vitro. Plant Soil, 237, 47-54.
  • Monib, M., Hosny, I. and Besada, Y.B. 1984. Seed inoculation of castor oil plant (Ricinus communis) and effect on nutrient uptake. Soil Biol Conserv Biosphere 2, 723–732.
  • Murty, M.G. and Ladha, J.K. 1988. Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant Soil 108, 281–285.
  • Nahas, E. 1996. Factors determining rock phosphate solubilization by microorganisms isolated from soil. W J Microbiol Biotechnol 12, 567-572.
  • Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms . FEMS Microb Lett, 170, 265-270.
  • Nautiyal, C. S., Bhadauria, S., Kumar, P., Lal, H., Mondal, R. and Verma, D. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microb Lett 182, 291-296.
  • Nautiyal, C. S., 1997. Method for Selection and Characterization of Rhizosphere-Competent Bacteria of Chickpea. Curr Microbiol 34, 12–17.
  • Noel, T.C., Sheng, C., Yost, C.K., Pharis, R.P., Hynes, M.F., 1996. Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: Direct growth promotion of canola and lettuce. Can J Microbiol, 42, 279-283.
  • Ohtake, H., Wu, H. Imazu, K., Ambe, Y., Kato J. and Kuroda, A. 1996. Bacterial phosphonate degradation, phosphite oxidation and polyphosphate accumulation. A Res Conserv and Recycling 18, 125–134.
  • Öztürk. A., Cağlar, O. and Sahin, F. 2003. Yield response of wheat and barley to inoculation of plant growth promoting rhizobacteria at various levels of nitrogen fertilization. J Plant Nutr Soil Sci 166, 1-5.
  • Pal, S. S., 1999. Interaction of an acid tolerant strain of phosphate soluilizing bacteria with a few acid tolerant crops. Plant Soil, 213, 221-230.
  • Pal, S.S., 1998. Interactions of an acid tolerant strain of phosphate solubilizing bacteria wih a few acid tolerant crops. Plant and Soil, 198, 169-177.
  • Paul, E.A and Clark. F.E. 1988. Soil Microbiology and Biochemistry Academic Press, San Diego, CA.
  • Peng, S., Biswas, J. C., Ladha, J. K., Gyaneshwar, P. and Chen, Y. 2002. Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Agron J 94, 925-929.
  • Petersen, D. J., Srinivasan, M. and Chanway, C. P. 1996. Bacillus polymyxa stimulates increased Rhizobium etlii populations and nodulation when co-resident in the rhizosphere of Phaseolus vulgaris, FEMS Microbiol Lett, 142, 271-276.
  • Poi, S. C., 1986. A study of performance of some phosphate-solubilizing microorgnisms in presence of some energy sources. Zentralblatt für Mikr., 141, 97-102.
  • Ratti, N., Kumar, S., Verma, H.N., Gautam, S.P., 2001. Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria, AMF and Azospirillum inoculation. Microbiol Res 156, 145-149.
  • Revsbech, N.P., Pedersen, O., Reichardt, W., Briones, A., 1999. Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol Fertil Soils, 29, 379-385.
  • Riccio, M.L., Rossolini, G.M., Lombardi, G., Chiesurin A. and Satta, G. 1997. Expression cloning of different bacterial phosphataseencoding genes by histochemical screening of genomic libraries onto an indicator medium containing phenolphthalein diphosphate and metyl green. J Appl Bacteriol 82, 177–185.
  • Rodriguez, H and Reynaldo F. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Avdan 17, 319- 339.
  • Rodríguez, H. and Fraga, R. 1999. Posphate solubilizing bacteria and their role in plant growth promotion. Biotec Adv 17, 319-339.
  • Rodríguez, H., Goire, I. and Rodríguez, M. 1996. Caracterización de cepas de Pseudomonas solubilizadoras de fósforo. Rev ICIDCA 30, 47–54.
  • Rodríguez, R. Vassilev, N. and Azcon, R. 1999. Increases in growth and nutrient uptake of alfalfa grown in soil amended with microbially-treated sugar beet waste. Appl Soil Ecol 11 (1), 9-15.
  • Rojas, A., Holguin, G., Glick, B.R. and Bashan, Y. 2001. Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (Psolubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiol Ecol, 35, 181-187.
  • Şahin, F., Çakmakçı, R., Kantar, F. 2004. Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant and Soil ( basımda).
  • Sakamoto, K. and Oba, Y. 1991 Relationship between the amount of organic material applied and soil biomass content. Soil Sci Plant Nutr, 37, 387-397.
  • Saleh, S.S., Glick, B.R., 2001. Involvement of gacS and rpoS in enhancement of the plant growthpromoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol, 47, 698-705.
  • Salih, H.M., Yahya, A.Y., Abdul-Rahem A.M. and Munam, B.H. 1989. Availability of phosphorus in a calcareus soil treated with rock phosphate or superphosphate as affected by phosphate dissolving fungi. Plant Soil 120, 181–185.
  • Salisbuy, F., 1994. The role of plant hormones. In plant-Environment Interactions. Ed. Wilkinson R.E., pp.39-81. Marcel Dekker, New York, USA.
  • Sarapatka, B. and Kraskova, M. 1997. Interactions between phosphatase activity and soil characteristics from some locations in the Czech Republic. Rostlinna-Vyroba 43, 415–419.
  • Sarig, S., Okon, Y. and Blum, A. 1990. Promotion of leaf area development and field in Sorghum bicolor inoculated with Azospirillum brasilense. Symbiosis 9, 235–245.
  • Schilling, G., Gransee, A. Deubel, A. Ležovič, G. and Ruppel, S. 1998. Phosphorus availability, root exudates, and microbial activity in the rhizosphere. Z Pflanzenernähr Bodenk 161, 465-478.
  • Singh, S. and Kapoor, K.K. 1999. Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improve drv matter yield and nutrient uptake by wheat grown in a sandy soil. Biol Fertil Soil. 28, 139–144.
  • Sivan, A. and Chet, I. 1992. Microbial control of plant diseases. In: R. Mitchell Editor, Environmental Microbiology Wiley-Liss, New York , 335–354.
  • Skrary, F.A. and Cameron, D.C. 1998. Purification and characterization of a Bacillus licheniformis phosphatase specific for D-alpha-glycerphosphate. Arch Biochem Biophys 349, 27–35.
  • Smith, J.H., Allison F.E. and Soulides, D.A. 1962. Phosphobacteria as a soil inoculant. Tech US Dept Agricult Bul 1, 63–70.
  • Stumm, W., Morgan, J.J., 1995. Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters, 3rd ed. John Wiley, New York.
  • Subba Rao, N.S., 1982. Advances in agricultural microbiology. In: Subba Rao N.S. Ed., Studies in the Agric. and Food Sci. Butterworth Scientific, London , 295–303.
  • Sukhovitskaya, L. A., 1998. Survival rates and growth-stimulating effects of Bacillus megatherium and Arobacterium radiobacter strains introduced into soil. Appl Biochem Microbiol, 34, 81-83.
  • Sundara, B., Natarajan, V. and Hari, K., 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crop Res, 77 (1), 43-49.
  • Suslov, T.V. 1982. Role of root-colonizing bacteria in plant growth. In: M.S. Mount and G.H. Lacy Ed., Phytopat. Prok. Academic Press, London, 187–223.
  • Tarafdar, J.C. and Junk, A. 1987. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soil 3,199–204.
  • Tavaria, F.K., Zuberer, D.A., 1997. Effect ef law pO(2) on colonization of maize roots by a genetically altered Pseudomonas putida [PH 6(L1019)]. Biol Fertil Soils, 26, 43-49.
  • Thaller, M.C., Berlutti, F., Schippa, S., Iori, P. Passariello C. and Rossolini, G.M. 1995. terogeneous patterns of acid phosphatases containing low-molecular-mass Polipeptides in members of the family Enterobacteriaceae.. Int J Syst Bacteriol 4, 255–261.
  • Thaller, M.C., Berlutti, F., Schippa, S., Lombardi, G. and Rossolini, G.M. 1994. Characterization and sequence of PhoC, the principal phosphateirrepressible acid phosphatase of Morganella morganii. Microbiology 140, 1341–1350.
  • Thomas, G.V., 1985. Occurrence and ability of phosphate-solubilizing fungi from coconut plant soils. Plant Soil 87, 357–364.
  • Tıwari, V. N., Lehri, L. K. and Pathak, A. N. 1989. Effect of inoculating crops with phosphomicrobes. Exp Agric, 25, 47-50.
  • Toro, M., Azcon, R., Barea, J.M., 1997. Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (P-32) and nutrient cycling. Appl Environ Microbiol, 63, 4408-4412.
  • Torriani-Gorini, A. 1994. Regulation of phosphate metabolism and transport. In: A. Torriani et al. Ed., Phosphate in Microorganisms: Cell. Mol. Biol. ASM Press, Washington, DC, 1–4.
  • Vassilev, N., Fenice, M. and Federici, F., 1996. Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variabile P16. Biotec Tech 10, 585–588.
  • Vassileva, M., Azcon, R., Barea, J. M. and Vassilev, N. 2000. Rock phosphate solubilization by free and encapsulated cells of Yarowia lipolytica. Proc Bioch, 35 693-697.
  • Vassileva, M., Azcon, R., Barea, J.M. and Vassilev, N., 1998. Application of an encapsulated filamentous fungus in solubilization of inorganic phosphate. J Biotechnol 63, 67–72.
  • Urashima, Y., and Hori K. 2003. Selection of PGPR which promotes the growth of spinach. Japanese J Soil Sci Plant Nutr 74, 157-162.
  • Van Elsas, J.D., Trevors, J.T., Jain, D., Wolters, A.C., Hiejnen, C.E. and Van Overbeek, L.S., 1992. Survival of, and root colonization by, alginateencapsulated Pseudomonas fluorescens cells following introduction into soil. Biol Fert Soils 14, 14–22.
  • Van Veen, J.A., Overbeek, L.S. and Van Elsas, J.D., 1997. Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61, 121–135.
  • Vande Broek, A., Lambrecht, M., Eggermont K. And Vanderleyden, J., 1999. Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181, 1338-1342.
  • Vasil, I. K. 1998. Biotechnology and food security for 21 st century: A real world perspective. Nature Biotec 16, 399-400.
  • Vázquez México P. 1996. Bacterias solubilizadoras de fosfatos inorgánicos asociadas a la rhizosfera de los mangles: Avicennia germinans (L.) L y Laguncularia racemosa (L.) Gerth. Tesis para el título de Biologo Marino. Univ. Autónoma de Baja California.
  • Vazquez, P., Holguin G., Puente, M. E., Lopez-Cortes A., Bashan Y., 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils, 30,460-468.
  • Vedder-Weiss, D., Jurkevitch, E., Burdman, S., Weiss, . and Okon, Y. 1999. Root growth, respiration and beta-glucosidase activity in maize (Zea mais) and common bean (Phaseolus vulgaris) inoculated ith Azospirillum brasilense. Symbiosis, 6, 363-377.
  • Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizes. Plant and Soil, 255, 571-586.
  • Vessey, J.K., Buss, T.J., 2002. Bacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes: Controlledenvironment studies. Can J Plant Sci, 82, 282-290.
  • Walley, F. L., and Germida J. J. 1997. Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas species and Glomus clarum NT4. Biol Fertil Soils 24, 365-371.
  • Wanner, B.L. 1996. Phosphorus assimilation and control of phosphate regulon. In Escherichia coli and Salmonela: Cel. Mol. Biol. Eds. Neidhart F.C., et al., 1357-1381. ASM Pres. Wshington.
  • Weissmann, R. and Gerhardson, B. 2001. Selective plant growth suppression by shoot application of soil bacteria. Plant Soil, 234, 159-170.
  • Whitelaw, M. A., Harden, T. J. and Helyar, K. R., 1999. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31, 655-665.
  • Whitelaw, M. A., Hardenand, T. A. and Bender, G. L. 1997. Plant growth promotion of wheat inoculated with Penicillium radicum sp. nov. Australian J Soil Res 35, 291–300.
  • Whitelaw, M. A. 2000. Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69, 99-151.
  • Xie, H, Pasternak, J.J. and Glick, B.R. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32, 67–71.
  • Xu, H.L. 2000. Soil-root interface water potential in sweet corn as affected by organic fertilizer and a microbial inoculant. J Crop Prod 3, 139-156.
  • Xu, J.G. and Johnson R. L. 1995. Root growth, microbial activity and phosphatase activity in oilcontaminated, remediated and uncontaminated soils planted to barley and field pea. Plant Soil 173, 3–10.
  • Yadav, K. And Singh, T. 1990. Effect of Bacillus megaterium on the solubilization of phosphatic fertilizers influencing yield and uptake by sugarcane. Bharatiya sugar, 15,15-23.
  • Yadav, K. S., and Dadarwal, K. R. 1997. Phosphate solubilization and mobilization through soil microorganisms. In: Biot. Appr. Soil Micr. Sust. Crop Prod. 293–308. Sci Publis Jodhpur.
Selçuk Üniversitesi Ziraat Fakültesi Dergisi (:Selçuk Tarım ve Gıda Bilimleri Dergisi)-Cover
  • ISSN: 1300-5774
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2018
  • Yayıncı: Selçuk Üniv. Ziraat Fak.
Sayıdaki Diğer Makaleler

Bitkilerin hastalıklara karşı dayanıklılığında konukçu enzimlerin rolü

Nuh BOYRAZ, Selçuk DELEN

Vakumlu tip pnömatik hassas ekim makinası ile şeker pancarı ekiminde sıra üzeri bitki dağılım düzgünlüğü ve tarla çıkış oranları üzerine ekim mesafelerinin ve ilerleme hızlarının etkisi

HAYDAR HACISEFEROĞULLARI

Isparta koşullarında fasulyenin (Phaseolus vulgaris L.) su tüketimi

YUSUF UÇAR, Abdullah KADAYIFÇI, H. İbrahim YILMAZ, Nevruz YARDIMCI

Değişik organik gübreler ve leonarditin toprak özellikleri ve mısır bitkisinin (Zea mays L.) gelişimi üzerine etkileri

Cevdet ŞEKER, İlknur ERSOY

Buğday çeşitlerinde borun çimlenme üzerine etkisinin in vitro ve saksı şartlarında araştırılması

MUSTAFA YORGANCILAR, Mehmet BABAOĞLU

Türkiye' de üretilen bazı meyve suyu ve konsantresinde patulin miktarının HPLC ile belirlenmesi

MEHMET AKBULUT

Bor uygulamasının nohut (Cicer arietinum L.) çeşitlerinde verim ve bazı verim unsurlarına etkileri

Hakan BAYRAK, MUSTAFA ÖNDER, Sait GEZGİN

Konya ili Çumra ilçesinde arazi toplulaştırması yapılmış tarım alanlarında buğday, fasulye ve şekerpancarı üretimini etkileyen faktörlerin ekonometrik analizi, Küçükköy örneği

ZEKİ BAYRAMOĞLU, CENNET OĞUZ

Farklı ekim derinlikleri ile sıralar arası mesafelerin toprak sırt yüksekliği ve tarla filiz çıkışı üzerine etkisi

TAMER MARAKOĞLU, Mustafa KONAK

Karaman ekolojik koşullarında silajlık sorgum-sudan otu melezinin II. ürün olarak yetiştirme imkanlarının belirlenmesi

Ahmet GÜNEŞ, Ramazan ACAR