Pantograf-katener sistemler için bulanık mantık tabanlı belirlenen pantograf modeli kullanılarak ark tespiti yaklaşımı

Elektrikli trenler, günümüzde yaygın olarak kullanılan, önemli bir ulaşım türüdür. Diğer ulaşım türleri ile karşılaştırıldığında elektrikli trenlerin güç tüketimi ve çevre kirliliğine olan etkisi daha azdır. Ayrıca konfor ve güvenlik gibi birçok avantajı vardır. Elektrikli trenlerde kullanılan en önemli bileşenlerden biri pantograf katener sistemidir. Pantograf katener sistemi, demiryolu hattı boyunca bulunan katener sistemi ve lokomotif üzerinde bulunan pantograf sisteminden oluşmaktadır. Lokomotifin ihtiyaç duyduğu elektrik enerjisi pantograf üst bölgesi ile katener telinin teması sonucunda sağlanmaktadır. Temas sırasında birçok nedenden dolayı arklar oluşmaktadır. Oluşan arklar elektrik enerjisinin sağlıklı aktarılmasını engellemektedir. Lokomotifin sağlıklı bir şekilde çalışabilmesi için elektrik enerjisinin sürekli alınabilmesi gerekmektedir. Bu nedenle pantograf katener sistemi elektrikli trenler için oldukça kritik bileşenlerdir. Bu çalışmada, pantograf katener sistemi için model ve ark tespiti için yeni bir yöntem önerilmektedir. Görüntü işleme ve bulanık mantık tabanlı bu yöntemde, birçok farklı türde pantograf sisteminin görüntüsü kullanılmıştır. Kullanılan görüntüler üzerinde Canny kenar çıkarımı yapıldıktan sonra Hough dönüşümü ile doğrular elde edilmektedir. Elde edilen doğruların bazı özellikleri bulanık mantığın giriş verileri olarak kullanılmaktadır. Bulanık mantık sonucunda pantograf sisteminin modeli tespit edilmektedir. Tespit edilen pantograf modeli kullanılarak pantograf temas bölgesinde oluşan arklar tespit edilmektedir.

Arc detection approach using fuzzy logic based pantograph model for pantographcatenary systems

Electric trains are now widely used, is an important transport modes. Compared with other types of transportation, the effect of an electric train power consumption and environmental pollution are less. There are also many advantages such as comfort and safety. One of the most important tools used in the electric train is pantograph catenary system. Pantograph catenary system consists of two parts. a catenary system along the railway line and the pantograph system consists placed on the locomotive. The locomotive’s electrical energy needs are provided as a result of contact with the upper region of the pantograph and catenary wire. Arcs can occur for many reasons during the contact. The arcing in the electrical energy in a healthy way hinders the transfer. Locomotive must be received continuous electrical energy to function in a healthy way. Therefore, the pantograph catenary system are quite critical components for electric railway. In this study, a new method to model and arc detection for pantograph catenary system is proposed. In this image processing and fuzzy logic based method, images of many different types of pantograph system are used. After Canny edge extraction on the images, the lines are obtained by the Hough transform. Some properties of the obtained lines are used as input data to fuzzy logic. Model of the pantograph system is determined as a result of fuzzy logic. The arcing at the contacts of the pantograph is determined using the pantograph model.

___

  • H. Kim, "Pantograph Detection System using Image Processing Techniques,1", 2015.
  • E. Karakose, M. T. Gencoglu, M. Karakose, O. Yaman, I. Aydin, E. Akin, “A new arc detection method based on fuzzy logic using S-transform for pantograph–catenary systems,” Journal of Intell. Manufacturing, 2015, pp. 1-18.
  • I. Aydin, E. Karakose, M. Karakose, M.T. Gencoglu, E. Akin, “A new computer vision approach for active pantograph control”, Innovations in Intelligent Systems and Applications, 2013, pp. 1-5.
  • I. Aydin, M. Karakose, E. Akin, “A Robust Anomaly Detection in Pantograph-Catenary System Based on Mean-Shift Tracking and Foreground Detection,” 2013 IEEE Int. Conf. Syst. Man, Cybern., Oct, 2013. pp. 4444–4449.
  • S. Midya, R. Thottappillil, “An overview of electromagnetic compatibility challenges in European Rail Traffic Management System,” Transp. Res. Part C Emerg. Technol., vol. 16, no. 5, Oct. 2008, pp. 515– 534,
  • A. Mariscotti, A. Marrese, N. Pasquino, R.S.L. Moriello “Time and frequency characterization of radiated disturbance in telecommunication bands due to pantograph arcing,” Measurement, vol. 46, no. 10, Dec. 2013, pp. 4342–4352.
  • F. Romano, M. Tucci, M. Raugi, S. Barmada, “Arc detection in pantographcatenary systems by the use of support vector machines-based classification,” IET Electr. Syst. Transp., Nov. 2013, pp. 1–8.
  • G. Chiriac, C. Dumitru, N. Costica,. "Critical Speed Impact over the PantographCatenary System’s Behaviour." Indian Journal of Science and Technology 9.40 2016.
  • G. Bucca, A. Collina, “A procedure for the wear prediction of collector strip and contact wire in pantograph–catenary system,” Wear, vol. 266, no. 1–2, Jan. 2009, pp. 46–59.
  • J. Skibicki, B. Mikołaj, "Analysis of measurement uncertainty for contact-less method used to measure the position of catenary contact wire, performed with the use of Monte Carlo method." Measurement 2016.
  • S. Östlund, A. Gustafsson, L. Buhrkall, M. Skoglund, “Condition monitoring of pantograph contact strip,” IET International Conference on Railway Condition Monitoring, 2008, pp. 1-6.
  • A. Matvejevs, A. Matvejevs, “PantographCatenary System Modeling Using MATLAB-Simulink Algorithms,” Publication in a Scientific Journal of the Series of Scientific Journal of RTU, vol. 44, 2010, pp. 38–44.
  • Y. Liu, G. W. Chang, H. M. Huang, “Mayr's Equation-Based Model for Pantograph Arc of High-Speed Railway Traction System,” IEEE Transactions on Power Delivery, vol. 25, no. 3, 2010, pp. 2025–2027.
  • L. G. C. Hamey, T. Watkins, S. W. T. Yen, “Pancam: In-Service Inspection of Locomotive Pantographs,” 9th Bienn. Conf. Aust. Pattern Recognit. Soc. on Digit. Image Comput. Tech. and Appl., Dec. 2007, pp. 493–499.
  • M. Li, W. Ze-yong, G. Xiao-rong, W. Li, Y. Kai, “Edge Detection on Pantograph Slide Image,” 2nd Int. Congr. Image Signal Process., Oct. 2009, pp. 1–3.
  • A. A. Boguslavskii, S. M. Sokolov, “Detecting objects in images in real-time computer vision systems using structured geometric models,” Program. Comput. Softw., vol. 32, no. 3, May 2006, pp. 177– 187.
  • M. Sacchi, S. Cagnoni, D. Spagnolettix, L. Ascariz, G. Zunino, A. Piazzi, “PAVISYS A computer vision system for the inspection of locomotive pantographs,” Pantograph Catenary Interaction Framework for Intelligent Control, 2011.
  • A. Haghi, U. U. Sheikh, M. N. Marsono, “A Hardware/Software Co-design Architecture of Canny Edge Detection,” 2012 Fourth Int. Conf. Comput. Intell. Model. Simul., vol. 2, no. 2, Sep. 2012, pp. 214–219.
  • X. Zhu, X. Gao, Z. Wang, L. Wang, and K. Yang, “Study on the Edge Detection and Extraction Algorithm in the Pantographslipper’s Abrasion,” 2010 Int. Conf. Comput. Inf. Sci., Dec. 2010, pp. 474– 477.
  • I. Aydın, O. Yaman, M. Karaköse, S.B. Çelebi, "Particle swarm based arc detection on time series in pantograph-catenary system". IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings, 2014, pp. 344-349.
  • A. Landi, L. Menconi, L. Sani, “Hough transform and thermo-vision for monitoring pantograph-catenary system,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 220, no. 4, Jan. 2006, pp. 435–447.
  • D. Rujiao, Z. Wei, H. Songling, C. Jianye, “Automatic inspection of the localizer slope based on improved Hough transform,” IEEE Int. Instrum. Meas. Technol. Conf., May 2011, pp. 1–4.
  • S. Walters, “Simulation of Fuzzy Control Applied to a Railway Pantograph-Catenary System 2 A Model of a PAC System,” Knowledge-Based and Intelligent Information and Engineering Systems, vol.6277, 2010, pp. 322–330,
  • O. Yaman, M. Karakose, I. Aydin, E. Akin, “Detection of pantograph geometric model based on fuzzy logic and image processing”, IEEE 22nd In Signal Processing and Communications Applications Conference (SIU), 2014, pp. 686-689.
  • E. Karakose, M.T. Gencoglu, “Adaptive fuzzy control approach for dynamic pantograph-catenary interaction,” IEEE International Symposium on Mechatronika, 2012, pp. 1-5,
  • I. Aydin. "A new approach based on firefly algorithm for vision-based railway overhead inspection system." Measurement 74, 2015, pp. 43-55.
  • Q. Chen, L. Zhao, J. Lu, G. Kuang, N. Wang, Y. Jiang, “Modified two-dimensional otsu image segmentation algorithm and fast realisation,” IET Image Processing, vol. 6, Issuse. 4, 2012, pp. 426-433.
  • D.H. AlSaeed, A. Bouridane, A. Elzaart, R. Sammouda, “Two modified Otsu image segmentation methods based on Lognormal and Gamma distribution models,” International Conference on Information Technology and e-Services, 2012, pp. 1-5.