YÜKSEK YAĞLI DİYETİN AÇLIK-TOKLUK METABOLİZMASINDA GÖREVLİ HORMONLAR VE NÖROPEPTİDLER ÜZERİNE ETKİLERİ

Günümüzde enerji yoğunluğu ve yağ içeriği yüksek, vitamin-mineral yönünden fakir besinlerin tüketimi gittikçe yaygınlaşmakta; bu besinlerin kontrolsüz tüketimi obezite ve diğer metabolik hastalıklara zemin hazırlamaktadır. Besin alımı; merkezi sinir sistemi, periferal sinyaller, duyusal uyarıcılar gibi pek çok yolla düzenlenir. Hipotalamusta bir yanıt oluşturarak açlığın, tokluğun ve besin alımının düzenlenmesinde rol oynayan; ghrelin, nöropeptid-Y, agouti ilişkili peptid, melanin konsantre edici hormon, oreksin, galanin, opioidler, leptin, insülin, glukagon benzeri peptid-1, kolesistokinin, kokain amfetamin düzenleyici transkript, α-melanosit stimule edici hormon, serotonin, kortikotropin salgılattırıcı faktör, nesfatin-1, bombesin gibi nöropeptidler tanımlanmıştır. Yüksek yağlı bir diyetle beslenmenin bunlar ve benzeri öğeler üzerine olan etkilerinin daha iyi anlaşılması iştah kontrolü ve enerji dengesinin düzenlenmesi açısından önem taşımaktadır.  

EFFECTS OF HIGH FAT DIET ON HORMONES AND NEUROPEPTIDES RELATED HUNGER AND SATIETY METABOLISM

Nowadays the consumption of high fat, low vitaminmineral density foods have been gradually increasing. The uncontrolled consumption of these kind of foods leads widespread of obesity and other metabolic diseases. Food intake is regulated by many factors such as central nervous system, peripheral signals and sensory stimuli. Many neuropeptides, namely ghrelin, neuropeptid-Y, agouti-related peptide, melanin concentrating hormone, oreksin, galanin, opioids, leptin, insulin, glukagon like peptide-1, cholecystokinin, cocain-amfetamin regulated transkript, α-melanocyte stimulated hormone, serotonin, corticotropin relasing factor, nesfatin-1, bombesin, that function through hypotalamus on hunger, satiety and food intake have been described. A better understanding of the effects of the high fat diet on these parameters is important in regulating appetite control and energy balance.

___

  • 1. Harrold JA, Dovey TM, Blundell JE, et al. CNS regulation of appetite. Neuropharmacology 2012; 63:3-17. 2. Wynee K, Stanley S, McGowan B, et al. Appetite control. Journal of Endocrinology 2005; 184:291– 318. 3. Dhillon J, Running CA, Tucker RM, et al. Effects of food form on appetite and energy balance. Food Quality and Preference 2016; 48:368–375. 4. Takeuchi S. Agouti-Related Protein. In: Takei Y, Ando H, Tsutsui K (eds), Handbook of Hormones Comparative Endocrinology for Basic and Clinical Research. Academic Press, USA 2016; p 70-71. 5. Passilly-Degrace P, Chevrot M, Bernard A, et al. Is the taste of fat regulated? Biochimie 2014; 96:3-7. 6. Akbulut G, Rakıcıoğlu N. Şişmanlığın beslenme tedavisinde güncel yaklaşımlar. Genel Tıp Derg 2010; 20:35-42. 7. François M, Barde S, Legrand R, et al. High fat diet increases ghrelin-expressing cells in stomach contributing to obesity. Nutrition 2016; 32:709-724. doi: 10.1016/j.nut.2015.12.034. 8. Gomez G, Han S, Englander EW, et al. Influence of a long-term high-fat diet on ghrelin secretion and ghrelin-induced food intake in rats. Regul Pept 2012; 173:60-63. doi: 10.1016/j.regpep.2011.09.006. 9. Gardiner JV, Campbell D, Patterson M, et al. The Hyperphagic Effect of Ghrelin Is Inhibited in Mice by a Diet High in Fat, Gastroenterology 2010; 138:2468 -2338. 10. Kozimor A, Chang H, Cooper JA. Effects of dietary fatty acid composition from a high fat meal on satiety. Appetite 2013;69:39–45. 11. Kentish SJ, Wittert GA, Blackshaw LA, et al. A chronic high fat diet alters the homologous and heterologous control of appetite regulating peptide receptor expression. Peptides 2013; 46:150-158. doi: 10.1016/j.peptides.2013.06.004. 12. Redmann Jr. SM, Argyropoulos G. AgRP-deficiency could lead to increased lifespan. Biochemical and Biophysical Research Communications 2006; 351:860–864. 13. Morganstern I, Chang GQ, Karatayeva O, et al. Increased orexin (OX) and melanin-concentrating hormone (MCH) expression in the perifornical lateral hypothalamus (PFLH) of rats prone to overconsuming a fat-rich diet. Appetite 2010; 54:631–683. doi:10.1016/j.appet.2010.04.145 14. Gezmen Karadağ M, Aksoy M. Yeni keşif nöropeptitlerden: Oreksin. Med Med J. 2009; 24:79- 87. 15. Nobunaga M, Obukuro K, Kurauchi Y, et al. High fat diet induces specific pathological changes in hypothalamic orexin neurons in mice. Neurochemistry International 2014; 78:61–66. 16. Fang P, He B, Shi M, et al. The regulative effect of galanin family members on link of energy metabolism and reproduction. Peptides 2015; 71:240–249. 17. Barson JR, Karatayev O, Gaysinskaya V, et al. Effect of dietary fatty acid composition on food intake, triglycerides, and hypothalamic peptides. Regul Pept 2012; 173:13–20. 18. Ikeda H, Ardianto AC, Yonemochi AN, et al. Inhibition Of Opioid Systems In The Hypothalamus As Well As The Mesolimbic Area Suppresses Feeding Behavior of Mice. Neuroscience 2015; 311:9–21. 19. Gugusheff JR, Eun Bae S, Rao A, et al. Sex and agedependent effects of a maternal junk food diet on the mu-opioid receptor in rat offspring. Behavioural Brain Research 2016; 301: 124–131. 20. Rojo ML, Söderström I, Olsson T, et al. Changes in cannabinoid CB(1) receptor functionality in the female rat prefrontal cortex following a high fat diet. Life Sci 2013; 92:757-762. doi: 10.1016/ j.lfs.2013.02.002 21. Cluny NL, Baraboi ED, Mackie K, et al. High fat diet and body weight have different effects on cannabinoid CB(1) receptor expression in rat nodose ganglia. Auton Neurosci 2013; 179:122-130. doi: 10.1016/j.autneu.2013.09.015. 22. Bülbül T. Nitrik Oksitin Hayvanlarda Beslenme Davranışı ve Bağırsak Motilitesi Üzerine Etkisi. Erciyes Üniv Vet Fak Derg 2014; 11:69-75. 23. Radika MK, Viswanathan P, Anuradha CV. Nitric oxide mediates the insulin sensitizing effects of bsitosterol in high fat diet-fed rats. Nitric Oxide 2013; 32:43–53. 24. İşbilen B, Arı Z, Var A, ve ark. Yüksek Yağ İçeren Diyet İle Beslenen Ratlarda DHEAS’ın Leptin, Lipid Profili ve Endotel Fonksiyonu Üzerine Etkileri. Fırat Üniversitesi Sağlık Bilimleri Dergisi 2007; 2:109 – 116. 25. Kong A, Neuhouser ML, Xiao L, et al. Higher habitual intake of dietary fat and carbohydrates are associated with lower leptin and higher ghrelin concentrations in overweight and obese postmenopausal women with elevated insulin levels. Nutr Res 2009; 29:768-776. doi: 10.1016/ j.nutres.2009.10.013. 26. Kaplan Sefil N, Sefil F. Diyet ve Diyabet. Mustafa Kemal Üniv.Tıp Derg 2013; 4:25-32. 27. Item F, Konrad D. Visceral fat and metabolic inflammation: the portal theory revisited. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2012; 13:30-39. 28. Richards P, Pais R, Habib AM, et al. High fat diet impairs the function of glucagon-like peptide-1 producing L-cells. Peptides 2016; 77:21-27. 29. Wang XF, Liu JJ, Xia J, et al. Endogenous Glucagonlike Peptide-1 Suppresses High-Fat Food Intake by Reducing Synaptic Drive onto Mesolimbic Dopamine Neurons. Cell Reports 2015; 12:726–733. 30. Gibbons C, Finlayson G, Caudwell P, et al. Postprandial profiles of CCK after high fat and high carbohydrate meals and the relationship to satiety in humans. Peptides 2016; 77:3-8. 31. Coll AP, Tung YCL. Pro-opiomelanocortin (POMC)- derived peptides and the regulation of energy homeostasis. Molecular and Cellular Endocrinology 2009; 300:147–151. 32. Ferretti S, Fornari A, Pedrazzi P, et al. Developmental overfeeding alters hypothalamic neuropeptide mRNA levels and response to a high-fat diet in adult mice. Peptides 2011; 32:1371–1383. 33. Heijboer AC, Voshol PJ, Donga E, et al. High fat diet induced hepatic insulin resistance is not related to changes in hypothalamic mRNA expression of NPY, AgRP, POMC and CART in mice. Peptides 2005; 26:2554–2558. 34. Yu Y, South T, Wang Q, et al. Differential expression of hypothalamic CART mRNA in response to body weight change following different dietary interventions. Neurochemistry International 2008; 52:1422–1430. 35. Bozkurt Zincir S. Yeme Bozukluklarında Nöroendokrin ve Moleküler Etkileşimler. Psikiyatride Güncel Yaklaşımlar 2014; 6:389-400. 36. Young RL, Lumsden AL, Keating DJ. Gut Serotonın Is A Regulator Of Obesity And Metabolism. Gastroenterology 2015;1–2. 37. Sharma R, Banerji MA. Corticotropin releasing factor (CRF) and obesity. Maturitas 2012; 72:1– 3. 38. Michel C, Dunn-Meynell A, Levin BE. Reduced brain CRH and GR mRNA expression precedes obesity in juvenile rats bred for diet induced obesity. Behav Brain Res 2004; 154:511–518.
  • 39. Stengel A. Nesfatin-1 – More than a food intake regulatory peptide. Peptides 2015; 72:175–183.
  • 40. Ramos-Álvarez I, Martín-Duce A, Moreno-Villegas Z, et al. Bombesin receptor subtype-3 (BRS-3), a novel candidate as therapeutic molecular target in obesity and diabetes. Molecular and Cellular Endocrinology 2013; 367:109–115.