HAYVAN VENOMLARI VE İLAÇ TASARIMINDA KULLANIMLARI

Venom üreten organizmalar, yüzyıllardır Yunan, Çin ve Batı’nın geleneksel tıbbında önemli yerlere sahip canlılardır. Bu canlılar tarafından üretilen venomlar (toksinler) iyon kanallarını ve organizmanın kilit noktası olan bazı fizyolojik mekanizmaları etkilerler. Peptit yapısındadırlar ve ilaç keşfi için oldukça önemli adaylardır. Bu peptitler yılan, akrep, örümcek, bal arısı, yaban arısı, kertenkele, karınca gibi birçok canlıdan elde edilebilir. Bu canlılardan çeşitli izolasyon yöntemleriyle elde edilen peptitlerin araştırılması, tedavi ve teşhiste kullanılacak yeni ajanların tasarlanıp geliştirilmesinin yanı sıra venom zehirlenmelerinde antidotların araştırılmasında da kullanılabilmektedir. Bu derlemede, venomların kaynaklarından ve günümüzde ilaç olarak kullanılan veya kullanılmaya aday peptitlerinden bahsedilmektedir.
Anahtar Kelimeler:

İlaç keşfi, peptit, venom

ANIMAL VENOMS AND THEIR USE IN DRUG DESIGN

Venom-producing organisms are living organism that have been an important place for centuries in Greek, Chinese and Western traditional medicine. The venoms (toxins) produced by these organisms affect to ion channels and some physiologic mechanisms that are key points for the organism. They are peptides in structure and very important candidates for drug discovery. These peptides can be obtained from many animals such as snakes, scorpions, spiders, honey bees, wasps, lizards, ants. Investigation of the peptides obtained by various isolation methods can be used to design and develop new agents to be used in treatment and diagnosis as well as to investigate antidotes in venom poisoning. This review deals with the sources of venoms and their peptides used as drug or candidate to be used in the future.

___

  • 1. Chippaux J. –P, and Goyffon M (1998). Venoms, antivenoms And immunotherapy. Toxicon, 36, 6, 823-846.
  • 2. Gopalakrishnakone P. (2016). Venom Genomics and Proteomics; Deadly Innovations: Unraveling the Molecular Evolution of Animal Venoms, London, 2.
  • 3. Wu Y, Ma H, Zhang F, Zhan C, Zou X, Cao Z (2018). Selective Voltage-Gated Sodium Channel Peptide Toxins from Animal Venom: Pharmacological Probes and Analgesic Drug Development. ACS Chem. Neurosci, 9, 187−197.
  • 4. Inceoglu B, Lango J, Jing J, et al. (2003). One scorpion, two venoms: Prevenom of Parabuthus transvaalicus acts as an alternative type of venom with distinct mechanism of action. PNAS, 100, 3, 922–927.
  • 5. Heinen T. E, Veiga A. B. G. (2011). Arthropod venoms and cancer. Toxicon 57 497–511.
  • 6. Ortiz E, Gurrola G. B, Schwartz E. F, Possani L. D (2015). Scorpion venom components as potential candidates for drug development. Toxicon 93 125-135.
  • 7. Yang‡§¶ S, Liu¶_ Z, Xiao‡§¶ Y, et al (2012). Chemical Punch Packed in Venoms Makes Centipedes Excellent Predators. Molecular & Cellular Proteomics Sep;11(9):640-50.
  • 8. Samy R. P, Stiles B. G, Franco O. L, Sethi G, Lim L. H. K (2017). Animal venoms as antimicrobial agents. Biochem Pharmacol 134 127–138.
  • 9. Gomes A, Bhattacharjee P, Mishia R, Biswas A. K, Dasgupta S. C, Giri B (2010). Indian J Exp Biol; Vol. 48; 93-103.
  • 10. Tytgat J, Chandy K. G, Garcia M. L, et al. (1999). A unified nomenclature for short-chain peptides isolated from scorpion venoms: a-KTx molecular subfamilies. TiPS-Nov (20), 444-447.
  • 11. Garcia M. L, Gao Y.-D, McManu O.B, Kaczorovski G. J (2001). Potassium channels: from scorpion venoms to high-resolution structure. Toxicon 39 739-748.
  • 12. Dudina E. E, Korokova Y. V, Bocharova N. E, et al. (2001). (OsK2, a New Selective Inhibitor of Kv1.2 Potassium Channels Purified from the Venom of the Scorpion Orthochirus scrobiculosus. Biochem Biophys Res Commun, 286: 841–847.
  • 13. Mackessy S.P (2010). Handbook of Venoms and Toxins of Reptiles. New York. Section I-II-III 3-393.
  • 14. Lu Q, Clemetson J. M. and Clemetson K.J (2005). Snake venoms and hemostasis. Journal of Thrombosis and Haemostasis, 3: 1791–1799.
  • 15. Casewell N. R, Wüster W, Vonk F.J, Harrison R. A, Fry B. G (2013).Complex cocktails: the evolutionary novelty of venoms. Trends in Ecology and Evolution, 28, 4, 219-229.
  • 16. Tasoulis T and Isbister G. K (2017). A Review and Database of Snake Venom Proteomes. Toxins, 9, 290.
  • 17. Markland F.S (1998). Snake Venoms And The Hemostatic System. Toxicon 36, 12, 1749-1800.
  • 18. Matsui T, Fujimura Y, Titani K (2000). Snake venom proteases a¡ecting hemostasis and thrombosis; Biochimica et Biophysica Acta 1477 146-156.
  • 19. Bjarnason J. B, Fox J. W (1994). Hemorrhagic metalloproteinases from snake venoms. Pharmac Ther 62(3):325-372.
  • 20. Sajevic T, Leonardi A and Krizaj I (2011). Haemostatically active proteins in snake venoms. Toxicon 57 627–645.
  • 21. Estrada G, Villegas E and Corzo G (2007). Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep, 24, 145–161.
  • 22. Grichin E. (1999). Polypeptide neurotoxins from spider venoms. Eur J Biochem, 264, 276-280.
  • 23. Pineda S. S, Undheim E, Ikonomopoulou M. P, King G. F (2014). AB, Rupasinghe D. B, et al. Spider venomics: implications for drug discovery. Future Med Chem 6(15), 1699–1714.
  • 24. Fletcher J. I, Chapman B. E, Mackay J. P, Howden M. E, King G. F (1997). The structure of versutoxin (d-atracotoxin-Hv1) provides insights into the binding of site 3 neurotoxins to the voltage-gated sodium channel. Structure, 5 (11), 1525-1535.
  • 25. Rash L. and Hodgson W. C (2002). Pharmachology and Biochemistry of Spider Venoms. Toxicon 40 225-254.
  • 26. Moreno M and Giralt E (2015). Three Valuable Peptides from Bee and Wasp Venoms for Therapeutic and Biotechnological Use: Melittin, Apamin and Mastoparan. Toxins, 7, 1126-1150.
  • 27. Komi D. E. A, Shafaghat F. and Zwiener R. D (2018). Immunology of Bee Venom; Clinic Rev Allerg Immunol 54: 386–396.
  • 28. Rady I, Siddiqui I. A, Rady M, Mukhtar H (2017). Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett.; 402: 16–31.
  • 29. Shkenderov S, Koburova K (1982). Adolapin - A Newly Isolated Analgetic And Anti-Inflammatory Polypeptide From Bee Venom. Toxicon 20, l, 317-321.
  • 30. Doupnik C. A (2017). Venom-derived peptides inhibiting Kir channels: Past, present, and future. Neuropharmacology 127 161-172.
  • 31. Ma R, Mahadevappa R. and Kwok H. F. Venom-based peptide therapy: insights into anti-cancer mechanism. Oncotarget, 2017, Vol. 8, (No. 59), pp 100908-100930.
  • 32. Ziegman R, Alewood P (2015). Bioactive Components in Fish Venoms. Toxins, 7, 1497-1531.
  • 33. Gwee M. C. E, Gopalakrishnakone P, Yuen R, Khoo H. E, Low K. S. Y (1994). A Review of Stonefish Venoms and Toxins.Pharmac Ther ,64 509-528.
  • 34. Han T. S, Teichert R. W, Olivera B. M, Bulaj G (2008). Conus Venoms - A Rich Source of Peptide-Based Therapeutics. Current Pharmaceutical Design, 14, 2462-2479.
  • 35. Cruz L. J, Santos V, Zafaralla G.C, et al. (1987). Invertebrate Vasopressin/Oxytocin Homologs; Characterızatıon Of Peptıdes From Conus Geographus And Conus Striatus Venoms. J Biol Chem 262, 33, Issue of November 25, 15821-15824.
  • 36. Terlau H. and Olivera B. M (2004). Conus Venoms: A Rich Source of Novel Ion Channel-Targeted Peptides. Physiol Rev 84: 41–68.
  • 37. Gadde K. M, Vetter M. L, Iqbal N, Hardy E, Öhman P (2017). Efficacy And Safety Of Autoinjected Exenatide Once-Weekly Suspension Versus Sitagliptin Or Placebo With Metformin İn Patients With Type 2 Diabetes: The Duration-NEO-2 randomized clinical study. Diabetes Obes Metab. 19: 979–988.
  • 38. Jimenez R, Ikonomopoulou M. P, Lopez J. A, Miles J. J (2018). Immune drug discovery from venoms. Toxicon 141 18-24.
  • 39. Pennington M. W, Czerwinski A. and Norton R. S (2018). Peptide therapeutics from venom: Current status and potential. Bioorg Med Chem 26 2738–2758.
  • 40. Robinson S. D, Undheim E. AB, Ueberheide B, King G. F (2017). Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery. Expert Rev Proteomics; 14(10): 931-939.
  • 41. Duruhan S, Biçer B, Tuncay M. S, Uyar M, Güzel S (2015). Sülük Uygulamasının Komplikasyonları; Integr Tıp Derg; 3 (1):16-20.
  • 42. Cho S-Y, Lee Y-E, Doo K-H, et al. (2018). Efficacy of Combined Treatment with Acupuncture and Bee Venom Acupuncture as an Adjunctive Treatment for Parkinson’s Disease. J Altern Complement Med 24, 1, 25–32.
  • 43. Ghazaryan N. A, Ghulikyan L. A, Kishmiryan A. V, et al. (2015). Anti-tumor effect investigation of obtustatin and crude Macrovipera lebetina obtusa venom in S-180 sarcoma bearing mice. Eur J Pharmacol 764 340–345.
  • 44. Zambelli V. O, Picolo G, Fernandes C.A.H, Fontes M. R.M, Cury Y. Secreted Phospholipases A2 from Animal Venoms in Pain and Analgesia. Toxins 2017, 9, 406.