Dürtüselliğin Nöroanatomik ve Nörokimyasal Temelleri

Dürtüsellik ortama uygun olmayan veya aşırı riskli, olgunlaşmamış, iyi planlanmamış ve çoğunlukla istenmeyen sonuçlara yol açan çeşitli davranışları kapsar. Dürtüsellik sabırsızlık, dikkatsizlik, risk alma, heyecan arama, zevk arama, zarar görme ihtimalini düşük hesaplama ve dışadönüklük gibi özellikler ile kendini gösterir. Dürtüsellik çok sayıda psikiyatrik bozukluğun çekirdek belirtilerinden biridir. Dürtüsel davranışların farklı yönlerine odaklanarak, hem insanda hem de hayvanlarda dürtüselliği ölçmek için birtakım davranışsal modeller geliştirmek mümkün olmuştur. Bunlar dürtüsel eylemi (motor dürtüsellik) ölçenler ve dürtüsel seçim ya da dürtüsel karar vermeyi (bilişsel dürtüsellik) ölçenler şeklinde iki ana kategoriye ayrılabilirler. Dürtüsel eylem bir yanıt vermeye engel olamamak olarak tanımlanabilir. Davranış bilimleri açısından, dürtü kontrolü yiyecek, cinsellik ya da yüksek derecede arzulanan diğer kazançlar için içsel veya dışsal olarak harekete geçirilen güçlü bir isteği modüle eden aktif bir inhibitör mekanizma şeklinde tarif edilir. Bu inhibitör kontrol mekanizması sayesinde hızlı koşullanmış yanıtlar ve refleksler geçici olarak baskılanır ve böylelikle daha yavaş bilişsel mekanizmalar davranışı yönlendirebilir. Bu sürece yanıt engellenmesi adı verilir. İnhibitör süreçleri incelemekte en yaygın kullanılan iki test go/no-go (yap/yapma) ve stop-signal reaction time (SSRT, dur işareti tepki süresi) testleridir. Dürtüsellik, dürtüsel eylemlerin yanısıra, dürtüsel kararlar veya seçimlerde de kendini belli eder. Burada ortaya çıkan ve inhibe edilen motor bir yanıt değil, bir karar verme süreci sözkonusudur. Dürtüsel karar verme ya da dürtüsel seçim yapma eylemlerin diğer muhtemel seçenekleri veya sonuçları yeterince düşünmeden başlatılması olarak tanımlanır. Dürtüsel seçim yapmanın ölçülmesinde kullanılan testlerden biri "gecikme indirimi"dir (delay-discounting). Burada bir ödülün verilmesi geciktiğinde subjektif olarak değerini kaybetmesi sözkonusudur. Bu tür testlerde hemen verilen daha küçük bir ödülün mü yoksa daha sonra verilen daha büyük bir ödülün mü tercih edileceği belirlenmeye çalışılır. Dürtüsel seçim hemen verilen küçük ödülün seçimi olarak tanımlanır. Dürtüsellik farklı bileşenleri olan bir davranıştır. Nöroanatomik ve nörokimyasal olarak birbirinden farklı süreçlere bölünerek incelenebilir. Nöroanatomik veriler yanıt engellenmesi (dürtüsel eylem/motor dürtüsellik) ve ödül gecikmesinin tolere edilememesi (dürtüsel seçim/karar verme) süreçlerinin farklı frontostriatal döngüler tarafından düzenlendiği düşüncesini desteklemektedir. Dorsal prefrontal korteks ve anterior singulat korteks dürtüsel seçim yapma ile ilgili görünmemekte, ancak inhibitör süreçlerin düzenlenmesinde bir şekilde rol oynamaktadır. Buna karşılık, orbitofrontal korteks ve bazolateral amigdala dürtüsel karar verme süreçlerinde önemli rol oynamaktadır. Nukleus akumbens ve subtalamik çekirdek gibi diğer yapılar ise her iki sinir devresinde ortak yapılar olabili

Neuroanatomical and Neurochemical Basis of Impulsivity

The term 'impulsivity' encompasses a multitude of behaviours that are poorly conceived, premature, inappropriate, and that frequently result in unwanted or deleterious outcomes. Impulsivity manifests as impatience carelessness, risk-taking, sensation-seeking and pleasure-seeking, an underestimated sense of harm, and extroversion. Impulsivity is a core symptom of a broad spectrum of psychiatric disorders. Through focusing on different aspects of impulsive behavior, it has proved possible to devise a variety of behavioral paradigms to measure impulsivity in both human and non-human subjects. These can be broadly divided into two categories: those measuring impulsive action or motoric impulsivity, and those measuring impulsive choice or impulsive decision-making. Impulsive action can be broadly defined as the inability to withhold from making a response. Within the framework of behavioral neuroscience and cognitive psychology, impulse control has been described as an active inhibitory mechanism which modulates the internally or externally driven pre-potent desire for primary reinforcers such as food, sex or other highly desirable rewards. This inhibitory control mechanism may provide the substrate by which rapid conditioned responses and reflexes are transiently suppressed, so that slower cognitive mechanisms can guide behavior. This process is referred to as response inhibition. Two of the most common tests used to study inhibitory processes are the go/no-go and stop-signal reaction time tasks. Impulsivity is also evident in the making of impulsive decisions or choices as well as in impulsive actions. Here, there is no "pre-potent" response that is primed and then forcibly inhibited, but a decision-making processes. Impulsive decision making or impulsive choice is defined as initiating actions without adequately considering other possible choices or consequences. Impulsive choice is typically measured in the delay discounting paradigm. In tis paradigm, the tendency to prefer small immediate rewards over larger, more delayed reinforcers is measured. İmpulsive choice is defined by a greater tendency to value or choose smaller, more immediate reinforcers. Impulsivity is a multi-faceted behaviour. This behaviour may be studied by subdividing it into different processes neuroanatomically and neurochemically. Neuroanatomical data support the suggestion that behavioral disinhibition (impulsive action / motoric impulsivity) and delay-discounting (impulsive choice / decision making) differ in the degree to which various components of frontostriatal loops are implicated in their regulation. The dorsal prefrontal cortex does not appear to be involved in mediating impulsive choice, yet does have some role in regulating inhibitory processes. In contrast, there appears to be a pronounced role for the orbitofrontal cortex and basolateral amygdala in controlling impulsive choice. Other structures, however, such as the nucleus accumbens and subthalamic nucleus may

___

  • Hollander E, Evers M. New developments in impulsivity. Lancet 2001; 358:949-950.
  • Chamberlain SR, Sahakian BJ. The neuropsychiatry of impulsivity. Curr Opin Psychiatr 2007; 20:255-261.
  • Torregrossa MM, Quinn JJ, Taylor JR. Impulsivity, compulsivity, and habit: the role of orbitofrontal cortex revisited. Biol Psychiatry 2008; 63:253-255.
  • Winstanley CA, Eagle DM, Robbins TW. Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies. Clin Psychol Rev 2006; 26:379-395.
  • Dalley JW, Mar AC, Economidou D, Robbins TW. Neurobehavioral mechanisms of impulsivity: Fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 2008; 90:250-260.
  • Reynolds B. A review of delay-discounting research with humans: Relations to drug use and gambling. Behav Pharmacol 2006; 17:651-667.
  • Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci 2004; 8:170-177.
  • Rieger M, Gauggel S, Burmeister K. Inhibition of ongoing responses following frontal, nonfrontal, and basal ganglia lesions. Neuropsychology 2003; 17:272-282.
  • Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neurosci 2003; 6:115-116.
  • Decary A, Richer F. Response selection deficits in frontal excisions. Neuropsychologia 1995; 33:1243-1253.
  • Godefroy O, Rousseaux M. Divided and focused attention in patients with lesion of the prefrontal cortex. Brain Cogn 1996; 30:155-174.
  • Band GPH, van Boxtel GJM. Inhibitory motor control in stop paradigms: review and reinterpretation of neural mechanisms. Acta Psychol 1999; 101:179-211.
  • Rubia K, Russell T, Overmeyer S, Brammer MJ, Bullmore ET, Sharma T et al. Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage 2001; 13:250-261.
  • Rubia K, Smith AB, Brammer MJ, Taylor E et al. Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 2003; 20:351-358.
  • Dalley JW, Thomas KL, Howes SR, Tsai TH, Aparicio-Legarza MI, Reynolds GP et al. Effects of excitotoxic lesions of the rat prefrontal cortex on CREB regulation and presynaptic markers of dopamine and amino acid function in the nucleus accumbens. Eur J Neurosci 1999; 11:1265-1274.
  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 2001; 292:2499- 2501.
  • Christakou A, Robbins TW, Everitt BJ. Functional disconnection of a prefrontal cortical–dorsal striatal system disrupts choice reaction time performance: implications for attentional function. Behav Neurosci 2001; 115:812-825.
  • ChudasamaY, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW. Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 2003; 146:105-119.
  • Muir JL, Everitt BJ, Robbins TW. The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task. Cereb Cortex 1996; 6:470–481.
  • Mazzola-Pomietto P, Kaladjian A, Azorin JM, Anton JL, Jeanningros R. Bilateral decrease in ventrolateral prefrontal cortex activation during motor response inhibition in mania. J Psychiatr Res 2008; 43:432-441.
  • Evers EA, van der Veen FM, van Deursen JA, Schmitt JA, Deutz NE, Jolles J. The effect of acute tryptophan depletion on the BOLD response during performance monitoring and response inhibition in healthy male volunteers. Psychopharmacology (Berl) 2006; 187:200-208.
  • Leung HC, Cai W. Common and differential ventrolateral prefrontal activity during inhibition of hand and eye movements. J Neurosci 2007; 27:9893-9900.
  • Liddle PF, Kiehl KA, Smith AM. Event-related fMRI study of response inhibition. Hum Brain Mapp 2001; 12:100-109.
  • Matthews SC, Simmons AN, Arce E, Paulus MP. Dissociation of inhibition from error processing using a parametric inhibitory task during functional magnetic resonance imaging. Neuroreport 2005; 16:755-760.
  • Rubia K, Smith AB, Taylor E, Brammer M. Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes. Hum Brain Mapp 2007; 28:1163–1177.
  • Dickstein SG, Bannon K, Castellanos FX, Milham MP. The neural correlates of attention deficit hyperactivity disorder: an ALE metaanalysis. J Child Psychol Psychiatr 2006; 47:1051–1062.
  • Rubia K, Smith AB, Brammer MJ, Toone B, Taylor E. Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. Am J Psychiatry 2005; 162:1067–1075.
  • Kaladjian A, Jeanningros R, Azorin JM, Grimault S, Anton JL, Mazzola-Pomietto P. Blunted activation in right ventrolateral prefrontal cortex during motor response inhibition in schizophrenia. Schizophr Res 2007; 97:184-193.
  • Vollm B, Richardson P, Stirling J, Elliott R, Dolan M, Chaudhry I et al. Neurobiological substrates of antisocial and borderline personality disorder: preliminary results of a functional fMRI study. Crim Behav Ment Health 2004; 14:39-54.
  • Holland PC, Gallagher M. Amygdala-frontal interactions and reward expectancy. Curr Opin Neurobiol 2004; 14:148 –155.
  • Hornak J, O’Doherty J, Bramham J, Rolls ET, Morris RG, Bullock PR, et al. Reward- related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci 2004; 16:463-478.
  • Berlin HA, Rolls ET, Kischka U. Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain 2004; 127:1108-1126.
  • Asahi S, Okamoto Y, Okada G, Yamawaki S, Yokota N. Negative correlation between right prefrontal activity during response inhibition and impulsiveness: A fMRI study. Eur Arch Psychiatr Clin Neurosci 2004, 254:245–251.
  • Goethals I, Audenaert K, Jacobs F, Van den Eynde F, Bernagie K, Kolindou A, et al. Brain perfusion SPECT in impulsivity related personality disorders. Behav Brain Res 2005; 157:187-192.
  • Horn NR, Dolan M, Elliott R, Deakin JF, Woodruff PW. Response inhibition and impulsivity: A fMRI study. Neuropsychologia 2003; 41:1959-1966.
  • Eagle DM, Baunez C, Hutcheson DM, Lehmann O, Shah AP, Robbins TW. Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. Cereb Cortex 2008; 18:178-188.
  • Chudasama Y, Robbins TW. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: Further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 2003; 23:8771-8780.
  • Ongur D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 2000; 10:206-219.
  • Bechara A, Damasio H, Damasio AR, Lee GP. Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J Neurosci 1999; 19:5473-5481.
  • Grafman J, Schwab K, Warden D, Pridgen A, Brown HR, Salazar AM. Frontal lobe injuries, violence, and aggression: A report of the Vietnam Head Injury Study. Neurology 1996; 46:1231-1238.
  • Eagle DM, Robbins TW. Lesions of the medial prefrontal cortex or nucleus accumbens core do not impair inhibitory control in rats performing a stop-signal reaction time task. Behav Brain Res 2003; 146:131−144.
  • Mogenson GJ, Jones DL, Yim CY. From motivation to action: Functional interface between the limbic system and the motor system. Prog Neurobiol 1980; 14:69−97.
  • Berendse HW, Galisdegraaf Y, Groenewegen HJ. Topographical organisation and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 1992; 316:314-347.
  • Sellings LHL, Clarke PBS. Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core. J Neurosci 2003; 23:6295-6303.
  • Acheson A, Farrar AM, Patak M, Hausknecht KA, Kieres AK, Choi S, et al. Nucleus accumbens lesions decrease sensitivity to rapid changes in the delay to reinforcement. Behav Brain Res 2006; 173:217-228.
  • Christakou A, Robbins TW, Everitt BJ. Prefrontal cortical–ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J Neurosci 2004; 24:773-780.
  • Winstanley CA, Theobald DE, Cardinal RN, Robbins TW. Contrasting roles for basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 2004; 24:4718-4722.
  • Schoenbaum G, Setlow B, Saddoris MP, Gallagher M. Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 2003; 39:855-867.
  • Eagle DM, Robbins TW. Inhibitory control in rats performing a stop-signal reaction- time task: Effects of lesions of the medial striatum and D-amphetamine. Behav Neurosci 2003; 117:1302−1317.
  • Aron AR, Poldrack RA. Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J Neurosci 2006; 26:2424-2433.
  • Winstanley CA, Baunez C, Theobald DE, Robbins TW. Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: The importance of the basal ganglia in Pavlovian conditioning and impulse control. Eur J Neurosci 2005; 21:3107-3116.
  • Uslaner JM, Robinson TE. Subthalamic nucleus lesions increase impulsive action and decrease impulsive choice-mediation by enhanced incentive motivation. Eur J Neurosci 2006; 24:2345-2354.
  • Cardinal RN, Parkinson JA, Lachenal G, Halkerston KM, Rudarakanchana N, Hall J, et al. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav Neurosci 2002; 116:553-567.
  • Soubrie P. Reconciling the role of central serotonin neurons in human and animal behavior. Behav Brain Sci 1986; 9:319-364.
  • Mehlman PT, Higley JD, Faucher I, Lilly AA, Taub DM, Vickers J, et al. Low CSF 5-HIAA concentrations and severe aggression and impaired impulse control in nonhuman primates. Am J Psychiatry 1994; 151:1485-1491.
  • Linnoila M, Virkkunen M, Scheinin M. Low cerebrospinal-fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci 1983; 33:2609-2614.
  • Mann JJ. Neurobiology of suicidal behaviour. Nat Rev Neurosci 2003; 4:819-828.
  • Bizot J, Le Bihan C, Puech AJ, Hamon M, Thiébot M. Serotonin and tolerance to delay of reward in rats. Psychopharmacology (Berl) 1999; 146:400-412.
  • Mobini S, Chiang TJ, Ho MY, Bradshaw CM, Szabadi E. Effects of central 5- hydroxytryptamine depletion on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology (Berl) 2000; 152:390-397.
  • Poulos CX, Parker JL, Le AD. Dexfenfluramine and 8-OH-DPAT modulate impulsivity in a delay-of-reward paradigm: Implications for a correspondence with alcohol consumption. Behav Pharmacol 1996; 7:395-399.
  • Liu YP, Wilkinson LS, Robbins TW. Effects of acute and chronic buspirone on impulsive choice and efflux of 5-HT and dopamine in hippocampus, nucleus accumbens and prefrontal cortex. Psychopharmacology (Berl) 2004; 173:175-185.
  • Wolff MC, Leander JD. Selective serotonin reuptake inhibitors decrease impulsive behaviour as measured by an adjusting delay procedure in the pigeon. Neuropsychopharmacol 2002; 27: 421-429.
  • Fletcher PJ. Effects of combined or separate 5,7-dihydroxytryptamine lesions of the dorsal and median raphe nuclei on responding maintained by a DRL 20 s schedule of food reinforcement. Brain Res 1995; 675:45-54.
  • Harrison AA, Everitt BJ, Robbins TW. Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharmacology (Berl) 1997; 133:329-342.
  • Wogar MA, Bradshaw CM, Szabadi E. Evidence for an involvement of 5- hydroxytryptaminergic neurones in the maintenance of operant behaviour by positive reinforcement. Psychopharmacology (Berl) 1991; 105:119-124.
  • Carli M, Samanin R. The 5-HT1A receptor agonist 8-OH-DPAT reduces rats’ accuracy of attentional performance and enhances impulsive responding in a five-choice serial reaction time task: role of presynaptic 5-HT1A receptors. Psychopharmacology (Berl) 2000; 149:259-268.
  • Harrison AA, Everitt BJ, Robbins TW. Doubly dissociable effects of median- and dorsal-raphe lesions on the performance of the five-choice serial reaction time test of attention in rats. Behav Brain Res 1997, 89:135-149.
  • Winstanley CA, Dalley JW, Theobald DE, Robbins TW. Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice on a delay- discounting task in rats. Psychopharmacology (Berl) 2003; 170:320-331.
  • Dzung Lê A, Funk D, Harding S, Juzytsch W, Fletcher PJ. Intra-median raphe nucleus (MRN) infusions of muscimol, a GABA-A receptor agonist, reinstate alcohol seeking in rats: role of impulsivity and reward. Psychopharmacology (Berl) 2008; 195:605-615.
  • Homberg JR, Pattij T, Janssen MC, Ronken E, De Boer SF, Schoffelmeer AN et al. Serotonin transporter deficiency in rats improves inhibitory control but not behavioural flexibility. Eur J Neurosci 2007; 26:2066-2073.
  • Evenden JL, Ryan CN. The pharmacology of impulsive behaviour in rats: The effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology (Berl) 1996; 128:161-170.
  • Dalley JW, Theobald DE, Eagle DM, Passetti F, Robbins TW. Deficits in impulse control associated with tonically elevated serotonergic function in rat prefrontal cortex. Neuropsychopharmacology 2002; 26:716-728.
  • Barbelivien A, Billy E, Lazarus C, Kelche C, Majchrzak M. Rats with different profiles of impulsive choice behavior exhibit differences in responses to caffeine and d- amphetamine and in medial prefrontal cortex 5-HT utilization. Behav Brain Res 2008; 187:273-283.
  • Walderhaug E, Lunde H, Nordvik JEv, Landrİ NI, Refsum H, Magnusson A. Lowering of serotonin by rapid tryptophan depletion increases impulsiveness in normal individuals. Psychopharmacology (Berl) 2002; 164:385-391.
  • Clark L, Roiser JP, Cools R, Rubinsztein DC, Sahakian BJ, Robbins TW. Stop signal response inhibition is not modulated by tryptophan depletion or the serotonin transporter polymorphism in healthy volunteers: Implications for the 5-HT theory of impulsivity. Psychopharmacology (Berl) 2005; 182:570-578.
  • Crean J, Richards JB, deWit H. Effect of tryptophan depletion on impulsive behavior in men with or without a family history of alcoholism. Behav Brain Res 2002; 136:349- 357.
  • Chamberlain SR, Muller U, Deakin JB, Corlett PR, Dowson J, Cardinal RN, et al. Lack of deleterious effects of buspirone on cognition in healthy male volunteers. J Psychopharmacol 2007; 21:210-215.
  • Chamberlain SR, Muller U, Blackwell AD, Clark L, Robbins TW, Sahakian BJ. Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 2006; 311:861-863.
  • Evenden JL, Ryan CN. The pharmacology of impulsive behaviour in rats VI: The effects of ethanol and selective serotonergic drugs on response choice with varying delays of reinforcement. Psychopharmacology (Berl) 1999; 146:413-421.
  • Winstanley CA, Theobald DE, Dalley JW, Glennon JC, Robbins TW. 5-HT2A and 5- HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology (Berl) 2004; 176:376- 385.
  • Higgins GA, Enderlin M, Haman M, Fletcher PJ. The 5-HT2A receptor antagonist M100,907 attenuates motor and “impulsive-like” behaviours produced by NMDA receptor antagonism. Psychopharmacology (Berl) 2003; 170:309-319.
  • Winstanley CA, Chudasama Y, Dalley JW, Theobald DE, Glennon JC, Robbins TW. Intra-prefrontal 8-OH-DPAT and M100907 improve visuospatial attention and decrease impulsivity on the five-choice serial reaction time task in rats. Psychopharmacology (Berl) 2003; 167:304-314.
  • Koskinen T, Ruotsalainen S, Puumala T, Lappalainen R, Koivisto E, Männistö PT, et al. Activation of 5-HT2A receptors impairs response control of rats in a five-choice serial reaction time task. Neuropharmacology 2000; 39:471-481.
  • Koskinen T, Ruotsalainen S, Sirvio J. The 5-HT2 receptor activation enhances impulsive responding without increasing motor activity in rats. Pharmacol Biochem Behav 2000; 66:729-738.
  • Navarra R, Comery TA, Graf R, Rosenzweig-Lipson S, Day M. The 5-HT(2C) receptor agonist WAY-163909 decreases impulsivity in the 5-choice serial reaction time test. Behav Brain Res 2008; 188:412-415.
  • Fletcher PJ, Tampakeras M, Sinyard J, Higgins GA. Opposing effects of 5-HT2A and 5-HT2C receptor antagonists in the rat and mouse on premature responding in the five-choice serial reaction time test. Psychopharmacology (Berl) 2007; 195:223-234.
  • Carli M, Baviera M, Invernizzi RW, Balducci C. Dissociable contribution of 5-HT1A and 5-HT2A receptors in the medial prefrontal cortex to different aspects of executive control such as impulsivity and compulsive perseveration in rats. Neuropsychopharmacology 2006; 31:757-767.
  • van den Bergh FS, Bloemarts E, Groenink L, Olivier B, Oosting RS. Delay aversion: effects of 7-OH-DPAT, 5-HT1A/1B-receptor stimulation and D-cycloserine. Pharmacol Biochem Behav 2006; 85:736-743.
  • Winstanley CA, Theobald DE, Dalley JW, Robbins TW. Interactions between serotonin and dopamine in the control of impulsive choice in rats: therapeutic implications for impulse control disorders. Neuropsychopharmacology 2005; 30:669-682.
  • Blier P, Ward NM. Is there a role for 5-HT1A agonists in the treatment of depression? Biol Psychiatry 2003; 53:193-203.
  • Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57:1313-1323.
  • Ritz MC, Kuhar MJ. Relationship between self-administration of amphetamine and monoamine receptors in brain: comparison with cocaine. J Pharmacol Exper Ther 1989; 248:1010-1017.
  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI et al. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 2001; 39:32-41.
  • Seiden LS, Sabol KE, Ricaurte GA. Amphetamine: Effects on catecholamine systems and behavior. Ann Rev Pharm Toxicol 1993; 32:639-677.
  • Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 1995; 15:4102-4108.
  • Robbins TW. The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl) 2002; 163:362-380.
  • van Gaalen MM, Brueggeman RJ, Bronius PF, Schoffelmeer AN, Vanderschuren LJ. Behavioral disinhibition requires dopamine receptor activation. Psychopharmacology (Berl) 2006; 187:73-85.
  • Koskinen T, Sirvio J. Studies on the involvement of the dopaminergic system in the 5-HT2 agonist (DOI)-induced premature responding in a five-choice serial reaction time task. Brain Res Bull 2001; 54:65-75.
  • Lecourtier L, Kelly PH. Bilateral lesions of the habenula induce attentional disturbances in rats. Neuropsychopharmacology 2005; 30:484-496.
  • Passetti F, Levita L, Robbins TW. Sulpiride alleviates the attentional impairments of rats with medial prefrontal cortex lesions. Behav Brain Res 2003; 138:59-69.
  • Navarra R, Graf R, Huang Y, Logue S, Comery T, Hughes Z et al. Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice serial reaction time test. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:34-41.
  • Pattij T, Janssen MC, Vanderschuren LJ, Schoffelmeer AN, van Gaalen MM. Involvement of dopamine D (1) and D (2) receptors in the nucleus accumbens core and shell in inhibitory response control. Psychopharmacology (Berl) 2007; 191:587- 598.
  • Pezze MA, Dalley JW, Robbins TW. Differential roles of dopamine D1 and D2 receptors in the nucleus accumbens in attentional performance on the five-choice serial reaction time task. Neuropsychopharmacology 2007; 32:273-283.
  • Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002; 27:699-711.
  • Baunez C, Robbins TW. Effects of dopamine depletion of the dorsal striatum and further interaction with subthalamic nucleus lesions in an attentional task in the rat. Neuroscience 1999; 92:1343-1356.
  • Rosa-Neto P, Lou HC, Cumming P, Pryds O, Karrebaek H, Lunding J et al. Methylphenidate-evoked changes in striatal dopamine correlate with inattention and impulsivity in adolescents with attention deficit hyperactivity disorder. Neuroimage 2005; 25:868-876.
  • Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 2001; 21:RC121.
  • Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Lääne K et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 2007; 315:1267-1270.
  • deWit H, Enggasser JL, Richards JB. Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology 2002;
  • Eagle DM, Tufft MR, Goodchild HL. Differential effects of modafinil and methylphenidate on stop-signal reaction time task performance in the rat, and interactions with the dopamine receptor antagonist cisflupenthixol. Psychopharmacology (Berl.) 2007; 192:193-206.
  • Feola TW, de Wit H, Richards JB. Effects of d-amphetamine and alcohol on a measure of behavioral inhibition in rats. Behav Neurosci 2000; 114:838-848.
  • Bizot JC, Chenault N, Houzé B, Herpin A, David S, Pothion S et al. Methylphenidate reduces impulsive behaviour in juvenile Wistar rats, but not in adult Wistar, SHR and WKY rats. Psychopharmacology (Berl.) 2007; 193:215-223.
  • Isles AR, Humby T, Wilkinson LS. Measuring impulsivity in mice using a novel operant delayed reinforcement task: effects of behavioural manipulations and d- amphetamine. Psychopharmacology (Berl) 2003; 170:376-382.
  • Richards JB, Sabol KE, de Wit H. Effects of methamphetamine on the adjusting amount procedure, a model of impulsive behavior in rats. Psychopharmacology (Berl) 1999; 146:432-439.
  • van Gaalen MM, van Koten R, Schoffelmeer AN. Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biol Psychiatry 2006; 60:66-73.
  • Wade TR, de Wit H, Richards JB. Effects of dopaminergic drugs on delayed reward as a measure of impulsive behavior in rats. Psychopharmacology (Berl) 2000; 150:90- 101.
  • Winstanley CA, LaPlant Q, Theobald DE. DeltaFosB induction in orbitofrontal cortex mediates tolerance to cocaine-induced cognitive dysfunction. J Neurosci 2007; 27:10497-10507.
  • Floresco SB, Tse MT, Ghods-Sharifi S. Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology 2008; 33:1966- 1979.
  • Kheramin S, Body S, Mobini S. Effects of quinolinic acid-induced lesions of the orbital prefrontal cortex on inter-temporal choice: a quantitative analysis. Psychopharmacology (Berl) 2002; 165:9-17.
  • Balcıoğlu A, Zhang K, Tarazi FI. Dopamine depletion abolishes apomorphine- and amphetamine-induced increases in extracellular serotonin levels in the striatum of conscious rats: A microdialysis study. Neuroscience 2003; 119:1045-1053.
  • Cole BJ, RobbinsTW. Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi on performance of a 5-choice serial reaction time task in rats: implications for theories of selective attention and arousal. Behav Brain Res 1989; 33:165-179.
  • Overtoom CC, Verbaten MN, Kemner C, Kenemans JL, van Engeland H, Buitelaar JK et al. Effects of methylphenidate, desipramine, and L-dopa on attention and inhibition in children with Attention Deficit Hyperactivity Disorder. Behav Brain Res 2003; 145:7-15.
  • Robinson ES, Eagle DM, Mar AC, Bari A, Banerjee G, Jiang X et al. Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 2008; 33:1028-1037.
  • Milstein JA, Lehmann O, Theobald DE. Selective depletion of cortical noradrenaline by anti-dopamine beta-hydroxylase-saporin impairs attentional function and enhances the effects of guanfacine in the rat. Psychopharmacology (Berl) 2007;
  • Blondeau C, Dellu-Hagedorn F. Dimensional analysis of ADHD subtypes in rats. Biol Psychiatry 2007; 61:1340-1350.
  • Paine TA, Tomasiewicz HC, Zhang K, Carlezon WA. Sensitivity of the five-choice serial reaction time task to the effects of various psychotropic drugs in sprague-dawley rats. Biol Psychiatry 2007; 62:687-693.
  • Koskinen T, Haapalinna A, Sirviö J. Alpha-adrenoceptor-mediated modulation of 5- HT2 receptor agonist induced impulsive responding in a 5-choice serial reaction ti- me task. Pharmacol Toxicol 2003; 92:214-225.
  • Lin JS, Roussel B, Akaoka H, Fort P, Debilly G, Jouvet M. Role of catecholamines in the modafinil and amphetamine induced wakefulness, a comparative pharmacological study in the cat. Brain Res 1992; 591:319-326.
  • Ma CL, Qi XL, Peng JY, Li BM. Selective deficit in no-go performance induced by blockade of prefrontal cortical alpha 2-adrenoceptors in monkeys. Neuroreport 2003; 14:1013-1016.
  • Mirjana C, Baviera M, Invernizzi RW, Balducci C. The serotonin 5-HT2A receptors antagonist M100907 prevents impairment in attentional performance by NMDA receptor blockade in the rat prefrontal cortex. Neuropsychopharmacology 2004; 29:1637-1647.
  • Higgins GA, Ballard TM, Huwyler J. Evaluation of the NR2B-selective NMDA receptor antagonist Ro 63-1908 on rodent behaviour: evidence for an involvement of NR2B NMDA receptors in response inhibition. Neuropharmacology 2003; 44:324-341.
  • Sukhotina IA, Dravolina OA, Novitskaya Y, Zvartau EE, Danysz W, Bespalov AY. Effects of mGlu1 receptor blockade on working memory, time estimation, and impulsivity in rats. Psychopharmacology (Berl) 2008; 196:211-220.
  • Semenova S, Markou A. The effects of the mGluR5 antagonist MPEP and the mGluR2/3 antagonist LY341495 on rats’ performance in the 5-choice serial reaction time task. Neuropharmacology 2007; 52:863-872.
  • Murphy ER, Dalley JW, Robbins TW. Local glutamate receptor antagonism in the rat prefrontal cortex disrupts response inhibition in a visuospatial attentional task. Psychopharmacology (Berl) 2005; 179:99-107.
  • Pattij T, Janssen MC, Schepers I, González-Cuevas G, de Vries TJ, Schoffelmeer AN. Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats. Psychopharmacology (Berl) 2007; 193:85-96.
  • Egertova M, Elphick MR. Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C terminal tail of CB1. J Comp Neurol 2000; 422:159- 171.
  • Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 1998; 83:393-411.
  • Egerton A, Allison C, Brett RR. Cannabinoids and prefrontal cortical function: insights from preclinical studies. Neurosci Biobehav Rev 2006; 30:680-695.
  • Lane SD, Cherek DR, Tcheremissine OV, Lieving LM, Pietras CJ. Acute marijuana effects on human risk taking. Neuropsychopharmacology 2005; 30:800-809.
  • McDonald J, Schleifer L, Richards JB, de Wit H. Effects of THC on behavioral measures of impulsivity in humans. Neuropsychopharmacology 2003; 28:1356-1365.
  • Ramaekers JG, Kauert G, van Ruitenbeek P, Theunissen EL, Schneider E, Moeller MR. High-potency marijuana impairs executive function and inhibitory motor control. Neuropsychopharmacology 2006; 31:2296-2303.
  • Schlicker E, Kathmann M. Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 2001; 22:565-572.
  • Schoffelmeer ANM, Hogenboom F, Wardeh G, De Vries TJ. Interactions between CB1 cannabinoid and ì opioid receptors mediating inhibition of neurotransmitter release in rat nucleus accumbens core. Neuropharmacology 2006; 51:773-781.
  • Cheer JF, Wassum KM, Heien ML, Phillips PE, Wightman RM. Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J Neurosci 2004; 24:4393-4400.
  • Szabo B, Muller T, Koch H. Effects of cannabinoids on dopamine release in the corpus striatum and the nucleus accumbens in vitro. J Neurochem 1999; 73:1084- 1089.
  • Tanda G, Pontieri FE, Di Chiara G. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common μ1 opioid receptor mechanism. Science 1997; 276:2048-2050.
  • Xi ZX, Gilbert JG, Peng XQ, Pak AC, Li X, Gardner EL. Cannabinoid CB1 receptor anta- gonist AM251 inhibits cocaine-primed relapse in rats: role of glutamate in the nucleus accumbens. J Neurosci 2006; 26:8531-8536.