Yüksek Gerilim Hatlarındaki Arızalarda Mikroşebekenin Otonom Çalışması ve Arızanın Minimizasyonu

Konvansiyonel şebekelerde arızalara manuel reaksiyonel yaklaşım sergilenmektedir. Manuel oprasyonlar bir çok durumda yavaş kalmakta ve bunun sonucunda büyük arıza ve kesintiler meydana gelebilmektedir. Türkiye 31 Mart 2015 tarihinde bunu yaşayarak tecrübe etmiştir. İnsan kaynaklı hataların aza indirilmesi ve büyük arızaların yaşanmaması için akıllı şebekelere geçiş kaçınılmazdır. Özellikle temel frekansa bağlı acil yük atma durumlarında uygun bölgelerin ada moda döndürülmesi bir çözüm olarak karşımıza çıkmaktadır. Ancak, mikroşebekelerde ada moda geçerken veya şebekeye bağlanırken büyük güç dalgalanmaları gerçekleşmektedir. Bundan dolayı bu çalışmada, yüksek gerilim hatlarında meydana gelebilecek simetrik ve asimetrik arızaların yüklere ve iletim hatları ile bileşenlerine verebileceği zararları minimize etmek için Matlab/Simulink ortamında akıllı şebeke yapısına uygun olarak ada modlu çalışabilen bir mikroşebeke tasarlanmıştır. Ayrıca ada durumuna geçişte ve çıkışta mikroşebekedeki güç dalgalanmalarını sınırlandırmak için Superconducting Fault Current Limiter (SFCL) etkileri de incelenmiştir. Bununla beraber meydana gelen arızaların, uzun süreli kesintilere sebebiyet vermemesi için tasarlanan yüksek gerilim hattında otonom manevra yönetimi yapılmıştır.

Autonomous operation of microgrid and minimization of fault in case of failure in highvoltage lines

The manual reaction approach to faults is exhibited in conventional grid. Manual operations are slow in many cases and resultingin big fault and power cut. Turkey has experienced it by living on March 31, 2015. The switching to smart grids is inevitable inorder to minimize human errors and avoid big failures. It is a solution to turn the appropriate zones back to the island mode,especially in case of emergency load shedding due to the basic frequency. However, large power fluctuations occur in themicrogrids when switching to the island mode or connecting to the grid. Therefore, In Matlab / Simulink, a microgrid is designedthat can operate in island mode in accordance with the smart grid structure to minimize the damage of symmetrical andasymmetrical of high voltage lines on loads, grid and its components in this study. Also the effects of Superconducting FaultCurrent Limiter (SFCL) have been studied to limit power fluctuations in the microgrid when switching to island mode and exitisland mode. In addition, autonomous maneuver management has been carried out on the designed high voltage line to preventfaults resulting in long term power cut.

___

  • 1. Yıldız S. and Burunkaya M., “Web Based Smart Meter for General Purpose Smart Home Systems with ESP8266”, 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, (2019).
  • 2. Üstünsoy F. and Sayan H. H., “Sample Laboratory Work for Energy Management with SCADA Supported by PLC”, Journal of Polytechnic, 21: 1007-1014, (2018).
  • 3. Li Z., Shahidehpour M., Aminifar F., Alabdulwahab A. and Al-Turki Y., “Networked Microgrids for Enhancing the Power System Resilience”, Proceedings of the IEEE, 105: 1289-1310, (2017).
  • 4. Venkata S. and Hatziargyriou N., “Grid resilience: Elasticity is needed when facing catastrophes”, IEEE Power Energy Mag., 13: 16-23, (2015).
  • 5. Saleh A. K., Zeineldin H. H. and El-Saadany F. E., “Optimal Protection Coordination for Microgrids Considering N-1 Contingency”, IEEE Transactions on Industrial Informatics, 13: 2270-2278, (2017).
  • 6. Blackburn J. L. and Domin T. J., “Protective Relaying: Principles and Applications”,: CRC Press, Boca Raton, FL, USA, (2015).
  • 7. Chen L., Chen H., Li G., Xu Y., Ren L. and Tang Y., “Application of a Resistive Type Superconducting Fault Current Limiter for a DC Microgrid System”, 2018 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, (2018).
  • 8. Bayindir R., Hossain E., Kabalci E. and Perez R., “A Comprehensive Study on Microgrid Technology”, International Journal of Renewable Energy ResearchIJRER, 4: 1094-1107, (2014).
  • 9. Hatziargyriou N., “Microgrids: Architectures and Control. West Sussex”, Wiley, 4, U.K., (2014).
  • 10. Hooshyar A. and Iravani R., “A New Directional Element for Microgrid Protection”, IEEE Transactions on Smart Grid, 9: 6862-6876, (2018).
  • 11. Lim S. and Lim S., “Analysis on Coordination of OverCurrent Relay Using Voltage Component in a Power Distribution System With a SFCL”, IEEE Transactions on Applied Superconductivity,29: 5, (2019).
  • 12. Monadi M., Gavriluta C., Luna A., Candela I. J. and Rodriguez P., “Centralized Protection Strategy for Medium Voltage DC Microgrids”, IEEE Transactions on Power Delivery, 32: 430-440, (2017).
  • 13. Telukunta V., Pradhan J., Agrawal A., Singh M. and Garudachar S. S., “Protection Challenges Under Bulk Penetration of Renewable Energy Resources in Power Systems:A Review”, CSEE Journal of Power and Energy Systems, 3: 365-379, (2017).
  • 14. Kong Y., Zhang B. and Hao Z., “Study of Ultra-HighSpeed Protection of Transmission Lines Using a Directional Comparison Scheme of Transient Energy”, IEEE Transactions on Power Delivery,30: 1317-1322, (2015).
  • 15. Zaki I. M., Sehiemy R. A. El., Amer M. G. and Enin F. M. A. El., “Sensitive/stable complementary fault identification scheme for overhead transmission lines”, IET Generation, Transmission & Distribution, 13: 3252-3263, (2019).
  • 16. Abdullah A., “Ultrafast Transmission Line Fault Detection Using a DWT-Based ANN”, IEEE Transactions on Industry Applications, 54: 1182-1193, (2017)
  • 17. Mohseni A., Yami M. S. and Akmal S. A. A., “Sensitivity Analysis and Stochastic Approach in Study of Transient Recovery Voltage with Presence of Superconducting FCL”, 2011 IEEE Electrical Power and Energy Conference, Winnipeg, MB, Canada, (2011).
  • 18. Li B. and He J., “Studies on the Application of R-SFCL in the VSC-Based DC Distribution System”, IEEE Transactions on Applied Superconductivity, 26: 3, (2016).
  • 19. Yehia M. D., Mansour A. D. and Yuan W., “Fault RideThrough Enhancement of PMSG Wind Turbines With DC Microgrids Using Resistive-Type SFCL”, IEEE Transactions on Applied Superconductivity, 28: 4, (2018).
  • 20. Lawal O. K., Umar I., Abubakar B. and Mahmood M. K., “Performance Analysis of Surge Current Protection Using Superconductors”, European Scientific Journal, Edition, 10: 19, (2014).
  • 21. Langston J., Steurer M., Woodruff S., Baldwin T. and Tang J., “A Generic Real-Time Computer Simulation Model for Superconducting Fault Current Limiters and Its Application in System Protection Studies”, IEEE Transactions on Applied Superconductivity, 15: 2090- 2093, (2005)
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ