XPS Yalıtımlı Dış Duvarların Isıl Performanslarının Deneysel İncelenmesi

Bu çalışmada; XPS ısı yalıtım levhaları kullanılarak tuğla ile örülmüş dış duvarların ısıl performansları deneysel olarak araştırılmıştır. Duvarların yapımında 13.5 cm kalınlığında yatay delikli tuğla kullanılmıştır. XPS ısı yalıtım levha kalınlığı olarak üç farklı kalınlık seçilmiştir. Dış duvarların ısıl performansı, sıcak kutu yöntemi (EN ISO 8990’a göre) kullanılarak belirlenmiştir. Sıcak kutu deneyinde dış ortam sıcaklığı -5 oC ve iç ortam sıcaklığı 27 oC olarak seçilmiştir. Deneysel çalışma için beş farklı duvar yapılmıştır. Bunlar sırasıyla; 1 adet yalıtımsız ve iç yüzeyi sıvalı, 1 adet yalıtımsız ve her iki yüzeyi sıvalı ve 3 adet XPS levha ile yalıtım (3, 4 ve 5 cm kalınlıkta) yapılmış duvarlardır. Soğuk ve sıcak bölümlerdeki duvar yüzey sıcaklıkları 480 dakika boyunca ölçülmüş ve EN ISO 8990’a göre duvarların toplam ısıl iletkenlik katsayısı (U değeri) hesaplanmıştır. XPS ile ısı yalıtımı yapılan duvarlarda en uygun ısı yalıtım malzemesi kalınlığı 5 cm ve U değeri 1.943 W/m2K olarak elde edilmiştir. Yalıtımsız duvarlar arasında tek yüzeyi sıvalı (KD-1) ve iki yüzeyi sıvalı (KD-2) duvarlarının U değerleri, sırasıyla 4.565 W/m2K ve 4.364 W/m2K olarak elde edilmiştir. İstatistiksel analiz sonucuna göre, XPS ısı yalıtım malzemesi kullanılan duvarlarda yalıtım kalınlığındaki artışı belirgin bir fark ortaya çıkarmamış ve XPS yalıtımlı duvarlar aynı grup içerisinde yer almıştır. XPS yalıtımlı duvarların yalıtımsız kontrol duvarlarına göre ısıl performansının oldukça yüksek olduğu belirlenmiştir.

Experimental Investigation of Thermal Performance of XPS Insulated Exterior Walls

In this study, the thermal performances of the outer walls built with bricks were investigated experimentally using XPS thermal insulation boards. In the construction of the walls, 13.5 cm thick horizontal perforated bricks were used. Three different thicknesses were chosen as XPS thermal insulation board thickness. The thermal performance of the outer walls was determined using the hot box method (according to EN ISO 8990). In the hot box experiment, outdoor temperature was chosen as -5 oC and indoor temperature as 27 oC. Five different walls were built for the experimental study. These are respectively; uninsulated and plastered on the inside, 1 are uninsulated and plastered on both sides and insulated with 3 XPS boards (3, 4 and 5 cm thick). Wall surface temperatures in cold and hot sections were measured for 480 minutes and the overall thermal conductivity coefficient (U value) of the walls was calculated according to EN ISO 8990. The most suitable thermal insulation material thickness was found to be 5 cm and U value was found to be 1.943 W/m2K on the walls that were heat insulated with XPS. U values of single-wall plastered (KD-1) and two-surface plastered (KD-2) walls were obtained as 4.565 W/m2K and 4.364 W/m2K, respectively. According to the results of the statistical analysis, the increase in the thickness of the insulation on the walls using XPS thermal insulation material did not reveal a significant difference and XPS insulated walls were included in the same group. It was determined that the thermal performance of XPS insulated walls is quite high compared to non-insulated control walls.

___

  • [1] Safa, M., Safa, M., Allen, J., Shahi, A., Haas, C.T. "Improving sustainable office building operation by using historical data and linear models to predict energy usage", Sustain. Cities Soc. 29:107-111, (2017).
  • [2] Huang, H., Zhou, Y., Huang, R., Wu, H., Sun, Y., Huang, G., Xu, T."Optimum insulation thicknesses and energy conservation of building thermal insulation materials in Chinese zone of humid subtropical climate", Sustain. Cities Soc. 52: 101840, (2020).
  • [3] Berardi, U. "A cross-country comparison of the building energy consumptions and their trends", Resour. Conserv. Recycl. 123:230-241, (2017).
  • [4] Li, B., Du, C., Yao, R., Yu, W., Costanzo, V. "Indoor thermal environments in Chinese residential buildings responding to the diversity of climates" Appl. Therm. Eng. 129: 693-708, (2018).
  • [5] Xu, C., Li, S., Zou, K. "Study of heat and moisture transfer in internal and external wall insulation configurations", J. Build. Eng. 24: 100724, (2019).
  • [6] Li, B., Yao, R., Wang, Q., Pan, Y. "An introduction to the Chinese Evaluation Standard for the indoor thermal environment", Energy Build. 82: 27-36, (2014).
  • [7] Fang, L., Diao, N., Shao, Z., Zhu, K., Fang, Z. "A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers", Energy Build. 167: 79-88, (2018).
  • [8] Natephra, W., Yabuki, N., Fukuda, T. "Optimizing the evaluation of building envelope design for thermal performance using a BIM-based overall thermal transfer value calculation", Build. Environ. 136: 128,145, (2018).
  • [9] Kolaitis, D.I., Malliotakis, E., Kontogeorgos, D.A., Mandilaras, I., Katsourinis, D.I., Founti, M.A."Comparative assessment of internal and external thermal insulation systems for energy efficient retrofitting of residential buildings", Energy Build. 64:123-131, (2013).
  • [10] Miskinis, K., Dikavicius, V., Buska, A., Banionis, K. "Influence of EPS, mineral wool and plaster layers on sound and thermal insulation of a wall: a case study. Appl. Acoust", 137:62-68, (2018).
  • [11] Jerman, M., Palomar, I., Kočí, V., Černý, R. "Thermal and hygric properties of biomaterials suitable for interior thermal insulation systems in historical and traditional buildings", Build. Environ. 154:81-88, (2019).
  • [12] Aste, N., Angelotti, A., Buzzetti, M. "The influence of the external walls thermal inertia on the energy performance of well insulated buildings", Energy Build. 41:1181-1187, (2009).
  • [13] Abanda, F.H., Byers, L. "An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling)", Energy, 97:517-527, (2016).
  • [14] Künzel, H.M. "Effect of interior and exterior insulation on the hygrothermal behaviour of exposed walls", Mater. Struct. Constr. 31:99-103, (1998).
  • [15] Vereecken, E., Van Gelder, L., Janssen, H., Roels, S. "Interior insulation for wall retrofitting - A probabilistic analysis of energy savings and hygrothermal risks", Energy Build. 89:231:244, (2015).
  • [16] Vereecken, E., Roels, S. "A comparison of the hygric performance of interior insulation systems: A hot box-cold box experiment", Energy Build. 80:37-44, (2014).
  • [17] Yuan, J., Farnham, C., Emura, K., Alam, M.A. "Proposal for optimum combination of reflectivity and insulation thickness of building exterior walls for annual thermal load in Japan", Build. Environ. 103:228-237, (2016).
  • [18] Dombayci, Ö.A., Ozturk, H.K., Atalay, Ö., Acar, Ş.G., Ulu, E.Y. "The Impact of Optimum Insulation Thickness of External Walls to Energy Saving and Emissions of CO2 and SO2 for Turkey Different Climate Regions" Energy Power Eng. 8:72186, (2016).
  • [19] Kurekci, N.A. "Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers", Energy Build. 118:197-213, (2016).
  • [20] Özel, G., Açikkalp, E., Görgün, B., Yamik, H., Caner, N. "Optimum insulation thickness determination using the environmental and life cycle cost analyses based entransy approach", Sustain. Energy Technol. Assessments. 11:87-91, (2015).
  • [21] Kaynakli, O. "A review of the economical and optimum thermal insulation thickness for building applications", Renewable and Sustainable Energy Reviews, 16:415-425, (2012)
  • [22] Lu, X., Memari, A.M. "Comparative study of Hot Box Test Method using laboratory evaluation of thermal properties of a given building envelope system type", Energy Build. 178:130-139, (2018).
  • [23] Chowdhury, D., Neogi, S. "Thermal performance evaluation of traditional walls and roof used in tropical climate using guarded hot box", Constr. Build. Mater. 218:73-89, (2019).
  • [24] Zhao, X., Mofid, S.A., Hulayel, M.R.A., Saxe, G.W., Jelle, B.P., Yang, R. "Reduced-scale hot box method for thermal characterization of window insulation materials", Appl. Therm. Eng. 160:114026, (2019).
  • [25] Lucchi, E., Roberti, F., Alexandra, T. "Definition of an experimental procedure with the hot box method for the thermal performance evaluation of inhomogeneous walls" Energy Build. 179:99-111, (2018).
  • [26] Roque, E., Vicente, R., Almeida, R.M.S.F., Mendes da Silva, J., Vaz Ferreira, A. "Thermal characterisation of traditional wall solution of built heritage using the simple hot box-heat flow meter method: In situ measurements and numerical simulation", Appl. Therm. Eng. 169:114935, (2020).
  • [27] Baldinelli, G., Bianchi, F., Lechowska, A.A., Schnotale, J.A. "Dynamic thermal properties of building components: Hot box experimental assessment under different solicitations", Energy Build. 168:1-8, (2018).
  • [28] Bienvenido-Huertas, D., Pérez-Ordóñez, J.L., Moyano, J., Seara-Paz, S. "Towards an in-situ evaluation methodology of thermal resistance of basement walls in buildings", Energy Build. 208:109643, (2020).
  • [29] Trgala, K., Pavelek, M., Wimmer, R. "Energy performance of five different building envelope structures using a modified Guarded Hot Box apparatus—Comparative analysis", Energy Build. 195:116-125, (2019).
  • [30] Gullbrekken, L., Uvslokk, S., Kvande, T., Time, B. "Hot-Box measurements of highly insulated wall, roof and floor structures", J. Build. Phys. 41:58-77, (2017).
  • [31] Kivioja, H., Vinha, J. "Hot-box measurements to investigate the internal convection of highly insulated loose-fill insulation roof structures", Energy Build. 216:109934, (2020).
  • [32] Martin, K., Campos-Celador, A., Escudero, C., Gómez, I., Sala, J.M. "Analysis of a thermal bridge in a guarded hot box testing facility", Energy Build. 50:139-149, (2012).
  • [33] Li, R., Wei, X., Li, H., Zhu, J. "Experimental Study on Ventilation and Thermal Performance of Exterior Sandwich Wall Based on Hot Box Method", Procedia Engineering, 205:2771-2778, (2017)
  • [34] Kus, H., Özkan, E., Göcer, Ö., Edis, E. "Hot box measurements of pumice aggregate concrete hollow block walls", Constr. Build. Mater. 38:837-845, (2013).
  • [35] EN 771-1 "Specification for masonry units - Part 1: Clay masonry units" (2003)
  • [36] EN 197-1 "Composition, specifications, and conformity criteria for common cements" (2004)
  • [37] ASTM C33-16 "Standard Specification for Concrete Aggregates" (2016).
  • [38] TS 825 "Binalarda Isı Yalıtım Kuralları" (2013).
  • [39] EN 13914-2 "Desıgn, Preparatıon And Applıcatıon Of External Renderıng And Internal Plasterıng - Part 2: Internal Plasterıng" (2016).
  • [40] EN 13914-1 "Desıgn, Preparatıon And Applıcatıon Of External Renderıng And Internal Plasterıng - Part 1: External Renderıng" (2016)
  • [41] EN ISO 8990 "Thermal insulation-Determination of steady-state thermal transmission properties-Calibrated and guarded hot box"(1996).
  • [42] Clewer, A.G., Scarisbrick, D.H. "Practical statistics and experimental design for plant and crop science", Wiley (2001).
  • [43] Cramer, D., Howitt, D. "The SAGE Dictionary of Statistics" SAGE Publications (2011).