Ultrasonik Sürücülerin Soğutulması için Termoelektrik Kendinden Soğutma Sisteminin Deneysel İncelenmesi

Elektronik sürücü devreleri ultrasonik transdüser sistemlerinin sürülmesinde kullanılır. Yüksek frekans nedeniyle, termal yönetim sürücünün güvenilirliğini önemli ölçüde etkileyen ana sorundur. Bu tür aşırı ısınma problemlerini çözmek için farklı uygulamalar üzerinde çalışılmaktadır. Bu çalışmada, push-pull sürücü devresindeki fazla ısıyı dağıtmak ve sistem performansını artırmak için bir termoelektrik kendinden soğutma sistemi tasarlanmıştır. Termoelektrik kendinden soğutma (TSC), herhangi bir ısı üreten cihazın elektrik tüketimi olmadan soğutulmasını sağlayan yeni bir termoelektrik uygulamadır. Bu makale, bir TSC sisteminin deneysel analizini sunmaktadır. Deneysel bir kurulum 275W push-pull ultrasonik sürücü devresinde tasarlanmıştır. Bu çalışmada, termoelektrik sistemin performansının farklı kalınlıklarda soğuk genişletici kullanımıyla nasıl değiştiği gösterilmiştir. 5 ve 10 mm kalınlığındaki soğuk genişleticiler, kendi kendini soğutma sisteminin hem sıcak hem de soğuk yüzeylerinin soğutma performansı üzerinde olumlu bir etkiye sahiptir. Bununla birlikte, soğuk genişleticinin kalınlığı eşik değeri geçtiğinde, soğuk genişleticinin ısı kapasitesi, soğuk ve sıcak yüzeyler arasındaki sıcaklığın fanın çalışmasını sağlayan kritik sıcaklık farklarına ulaşmasını engellemiştir.

Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers

Electronic driver circuits are used for the driving of ultrasonic transducer systems. Due to the high frequency switching, thermal management is the main problem that has a significant effect on the reliability of the driver. Different applications are being studied to solve such overheating problems. In this study, the designed thermoelectric self-cooling system dissipates the excess heat generated in the push-pull drive circuit and improves system performance. Thermoelectric self-cooling (TSC) is a new thermoelectric application which provide the cooling of any heat-generating device without electricity consumption. This paper presents the experimental analysis of a TSC system. An experimental setup is designed on a 275W push-pull ultrasonic driver circuit. In this study, it has been shown how the performance of the thermoelectric system changes with the use of cold extender of different thicknesses. 5 and 10 mm thickness cold extenders have had a positive effect on the cooling performance of both the hot and cold surfaces of the self-cooling system. However, when the thickness of the cold extender is increased beyond the threshold, the heat capacity of the cold extender has prevented the temperature between the cold and hot surfaces to reach critical temperature differences which enables the fan to operate.

___

[1] Benziger B., Anu Nair P., Balakrishnan P., “Review Paper On Thermoelectric Air-Conditioner Using Peltier Modules”, International Journal of Mechanical Engineering (IJME), 4/3: 2319-2240, (2015).

[2] Riffat S. B., Xiaoli M., “Thermoelectrics: a review of present and potential applications”, Appl Therm Eng, 23: 913-935, (2003).

[3] Von Lukowicz, Marian, Elisabeth Abbe, Tino Schmiel, and Martin Tajmar. "Thermoelectric generators on satellites—An approach for waste heat recovery in space." Energies, 9(7): (2016): 541.

[4] Vián J.G., Astrain D., “Development of a thermoelectric refrigerator with twophase thermosyphons and capillary lift”, Appl Therm Eng, 29: 1935-1940, (2009).

[5] Martinez A., Astrain D., Rodriquez A., “Experimental and Analytical Study on Thermoelectric Self Cooling of Devices”, Energy, 36: 5250-5260, (2011).

[6] Raut M S., Walke P V., “Thermoelectric Air Cooling for Cars”, International Journal of Engineering Science and Technology (IJEST), 4: 2381-2394, (2012).

[7] G Gromov, “Thermoelectric Cooling Modules”, Report from RMT Ltd, Business Briefing: Global Photonics Applications & Technology, (2002)

[8] Nesarajah M., Frey G., “Thermoelectric power generation: Peltier element versus thermoelectric generator”, IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society (Florence), 4252-4257, (2016).

[9] Yodovard P., Khedari J., Hirunlabh J., “The Potential of Waste Heat Thermoelectric Power Generation From Diesel Cycle and Gas Turbine Cogeneration Plants”, Energ Source 23: 213-224, (2001).

[10] Janak L., Singule, V., “Energy harvesting for aerospace: Application possibilities”, 16th IEEE International Conference on Mechatronics–Mechatronika,183–187,(2014).

[11] Chottirapong K., Manatrinon S., Dangsakul P., Kwankeow N., “Design of energy harvesting thermoelectric generator with wireless sensors in organic fertilizer plant”, 6th IEEE International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES),1–6, (2015).

[12] Leonov V., “Thermoelectric Energy Harvesting of human Body Heat for Wearable Sensors”, IEEE Sensors J, 13: 2284–2291, (2013)

[13] Ota T., Fujita K., Tokura S., Uematsu, K, “Development of Thermoelectric Power Generation System for Industrial Furnaces”, IEEE 25th International Conference on Thermoelectrics, 354–357, (2016).

[14] Liu K., Chen Y., Chen M., Test for “Thermoelectric Self Cooling”, ICCPE 2015, DOI: 10.1051/matecconf/20167105006, 71, 05006, (2016).

[15] Cai Y., Wang Y., Liu D., Zhao F., “Thermoelectric cooling technology applied in the field of electronic devices: Updated review on the parametric investigations and model developments”, Applied Thermal Engineering, 148: 238-255, (2019).

[16] Cooke D. B., “Design and Optimization of a Self-powered Thermoelectric Car Seat Cooler”, Master of Science In Mechanical Engineering of the Virginia Polytechnic Institute (2018).

[17] Kiflemariam R., Lin C., “Experimental investigation on heat driven self-cooling application based on thermoelectric system”, International Journal of Thermal Sciences, 109: 309-322, (2016)

[18] Wang P., Bar-Cohen A., “Self-Cooling on Germanium Chip”, IEEE Transactions on Components, Packaging and Manufacturing Technology. 1: 5, (2011)

[19] Saber H., Alshehri S., Maref W., “Performance optimization of cascaded and non-cascaded thermoelectric devices for cooling computer chips”, Energy Conversion and Management, 191: 174–192, (2019).

___

Bibtex @araştırma makalesi { politeknik675379, journal = {Politeknik Dergisi}, eissn = {2147-9429}, address = {Gazi Üniversitesi Teknoloji Fakültesi 06500 Teknikokullar - ANKARA}, publisher = {Gazi Üniversitesi}, year = {2022}, volume = {25}, number = {1}, pages = {169 - 175}, doi = {10.2339/politeknik.675379}, title = {Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers}, key = {cite}, author = {Şener, Mert and Arslan, F.mertkan and Gürses, Oğuz and Gürlek, Gökhan} }
APA Şener, M. , Arslan, F. , Gürses, O. & Gürlek, G. (2022). Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers . Politeknik Dergisi , 25 (1) , 169-175 . DOI: 10.2339/politeknik.675379
MLA Şener, M. , Arslan, F. , Gürses, O. , Gürlek, G. "Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers" . Politeknik Dergisi 25 (2022 ): 169-175 <
Chicago Şener, M. , Arslan, F. , Gürses, O. , Gürlek, G. "Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers". Politeknik Dergisi 25 (2022 ): 169-175
RIS TY - JOUR T1 - Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers AU - Mert Şener , F.mertkan Arslan , Oğuz Gürses , Gökhan Gürlek Y1 - 2022 PY - 2022 N1 - doi: 10.2339/politeknik.675379 DO - 10.2339/politeknik.675379 T2 - Politeknik Dergisi JF - Journal JO - JOR SP - 169 EP - 175 VL - 25 IS - 1 SN - -2147-9429 M3 - doi: 10.2339/politeknik.675379 UR - Y2 - 2020 ER -
EndNote %0 Politeknik Dergisi Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers %A Mert Şener , F.mertkan Arslan , Oğuz Gürses , Gökhan Gürlek %T Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers %D 2022 %J Politeknik Dergisi %P -2147-9429 %V 25 %N 1 %R doi: 10.2339/politeknik.675379 %U 10.2339/politeknik.675379
ISNAD Şener, Mert , Arslan, F.mertkan , Gürses, Oğuz , Gürlek, Gökhan . "Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers". Politeknik Dergisi 25 / 1 (Mart 2022): 169-175 .
AMA Şener M. , Arslan F. , Gürses O. , Gürlek G. Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers. Politeknik Dergisi. 2022; 25(1): 169-175.
Vancouver Şener M. , Arslan F. , Gürses O. , Gürlek G. Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers. Politeknik Dergisi. 2022; 25(1): 169-175.
IEEE M. Şener , F. Arslan , O. Gürses ve G. Gürlek , "Experimental Investigation of Thermoelectric Self-Cooling System for the Cooling of Ultrasonic Transducer Drivers", Politeknik Dergisi, c. 25, sayı. 1, ss. 169-175, Mar. 2022, doi:10.2339/politeknik.675379
Politeknik Dergisi
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998

65.1b9.6b