Timoshenko Kiriş Teorisi Kullanılarak Lamine Kompozit ve Sandviç Kirişlerin Eğilme Analizleri

Timoshenko kiriş teorisi ve Simetrik Düzgünleştirilmiş Parçacık Hidrodinamiği (SDPH) yöntemi kullanılarak çeşitli sınır koşullarına sahip lamine kompozit ve sandviç kirişlerin static davranışları incelenmiştir. Problemin çözümü için Taylor serisi açılımında 6.mertebeye kadar türev ifadelerini içeren SDPH algoritması geliştirilmiştir. Çeşitli sınır koşullarına ve en boy oranlarına sahip simetrik ve simetik olmayan çapraz destekli kompozit kiriş problemleri çözülerek doğrulama ve yakınsaklık çalışmaları gerçekleştirilmiştir. Sunulan yöntemin doğruluğunu sağlamak üzere boyutsuz formda elde edilen orta nokta çökmesi, eksenel ve kayma gerilme değerleri daha önceki çalışmalardan elde edilen sonuçlarla karşılaştırılmıştır. Fiber açısının, lamine yerleşimlerinin, ve en boy oranlarının orta nokta çökmesi ve gerilmeler üzerindeki etkileri çalışılmıştır. Aynı zamanda, karşılaştırma amacıyla hem yakınsaklık hem de detaylı analiz çalışmaları için çözülen problemler Euler-Bernoulli kiriş teorisi kullanılarak da çözülmüştür.

Flexure Analysis of Laminated Composite and Sandwich Beams Using Timoshenko Beam Theory

The static behaviour of laminated composite and sandwich beams subjected to various sets of boundary conditions is investigated by using the Timoshenko beam theory and the Symmetric Smoothed Particle Hydrodynamics (SSPH) method. In order to solve the problem, a SSPH code which consists of up to sixth order derivative terms in Taylor series expansion is developed. The validation and convergence studies are performed by solving symmetric and anti-symmetric cross-ply composite beam problems with various boundary conditions and aspect ratios. The results in terms of mid-span deflections, axial and shear stresses are compared with those from previous studies to validate the accuracy of the present method. The effects of fiber angle, lay-up and aspect ratio on mid-span displacements and stresses are studied. At the same time, the problems not only for the convergence analysis but also for the extensive analysis are also solved by using the Euler-Bernoulli beam theory for comparison purposes.

___

  • Nguyen T.K., Nguyen N.D., Vo T.P., Thai H.T., “Trigonometric-series solution for analysis of laminated composite beams”, Compos Struct, 160:142-151, (2017).
  • Timoshenko S.P., Goodier J.C., “Theory of Elasticity”, McGraw-Hill Co. Inc., New York, 1970.
  • Wang C.M., Reddy J.N., Lee, K.H., “Shear Deformable Beams and Plates Relations with Classical Solutions”, Elsevier Science Ltd., Oxford 2000.
  • Kant T., Manjunath B.S., “Refined theories for composite and sandwich beams with C0 finite elements”, Comput Struct, 33(3):755–764, (1989).
  • Khdeir A.A., Reddy J.N., “An exact solution for the bending of thin and thick cross-ply laminated beams”, Compos Struct 37(2):195–203, (1997).
  • Soldatos K.P., Watson P., “A general theory for the accurate stress analysis of homogeneous and laminated composite beams”, Int J Solids Struct. 34(22): 2857– 2885, (1997).
  • Shi G., Lam K.Y., Tay T.E., “On efficient finite element modeling of composite beams and plates using higher- order theories and an accurate composite beam element”, Compos Struct, 41(2):159–165, (1998).
  • Zenkour A. M., “Transverse shear and normal deformation theory for bending analysis of laminated and sandwich elastic beams”, Mechanics of Composite Materials & Structures, 6(3): 267-283 (1999).
  • Karama M., Afaq K.S., Mistou S., “Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity”, Int J Solids Struct., 40(6):1525– 1546, (2003).
  • Murthy M.V.V.S., Mahapatra D.R., Badarinarayana K., Gopalakrishnan S., “A refined higher order finite element for asymmetric composite beams”, Compos Struct, 67(1):27–35, (2005).
  • Vidal P., Polit O., “A family of sinus finite elements for the analysis of rectangular laminated beams”, Compos Struct, 84(1):56–72, (2008).
  • Aguiar R.M., Moleiro F., Soares C.M.M., “Assessment of mixed and displacement-based models for static analysis of composite beams of different cross-sections”, Compos Struct, 94 (2):601–616, (2012).
  • Nallim L.G., Oller S., Onate E., Flores F.G., “A hierarchical finite element for composite laminated beams using a refined zigzag theory”, Compos Struct, 163:168–184, (2017).
  • Vo T.P., Thai H.T., Nguyen T.K., Lanc D., Karamanli A., “Flexural analysis of laminated composite and sandwich beams using a four-unknown shear and normal deformation theory”, Compos Struct, 176:388-397, (2017).
  • Donning B.M., Liu W.K., “Meshless methods for shear- deformable beams and plates”, Computer Methods in Applied Mechanics and Engineering, 152:47-71, (1998).
  • Gu Y.T., Liu G.R., “A local point interpolation method for static and dynamic analysis of thin beams”, Computer Methods in Applied Mechanics and Engineering, 190(42):5515-5528, (2001).
  • Ferreira A.J.M., Roque C.M.C., Martins P.A.L.S., “Radial basis functions and higher-order shear deformation theories in the analysis of laminated composite beams and plates” Compos Struct, 66:287- 293, (2004).
  • Ferreira A.J.M., Fasshauer G.E., “Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method”, Computer Methods in Applied Mechanics and Engineering, 196:134-146, (2006).
  • Moosavi M.R., Delfanian F., Khelil A., “The orthogonal meshless finite volume method for solving Euler– Bernoulli beam and thin plate problems”, Finite Elements in Analysis and Design, 49:923-932, (2011).
  • Wu C.P., Yang S.W., Wang Y.M., Hu H.T., “A meshless collocation method for the plane problems of functionally graded material beams and plates using the DRK interpolation”, Mechanics Research Communications, 38:471-476, (2011).
  • Roque C.M.C., Figaldo D.S., Ferreira A.J.M., Reddy J.N., “A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method”, Compos Struct, 96:532-537, (2013).
  • Karamanli A., “Elastostatic analysis of two-directional functionally graded beams using various beam theories and Symmetric Smoothed Particle Hydrodynamics method”, Compos Struct, 160:653-669, (2017).
  • Karamanli A., “Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory”, Compos Struct, 160:653-669, (2017).
  • Ferreira A.J.M., Roque C.M.C., Martins P.A.L.S., “Radial basis functions and higher order shear deformation theories in the analysis of laminated composite beams and plates”, Compos Struct, 66:287- 293, (2004).
  • Ferreira A.J.M., “Thick composite beam analysis using a global meshless approximation based on radial basis functions”, Mech Adv Mater Struct, 10:271–84, (2003).
  • Roque C.M.C., Fidalgo D.S., Ferreira A.J.M., Reddy J.N., “A study of a microstructure dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method”, Compos Struct, 96:532-537, (2013).
  • Liew K.M., Lim H.K., Tan M.J., He X.Q., “Analysis of laminated composite beams and plates with piezoelectric patches using the element-free Galerkin method”, Computational Mechanics, 29:486-497, (2002).