The Investigation DO3-type Fe3M (M=Al, Ga, Si and Ge) Full-Heusler Alloys Within First Principles Study

Full-Heusler Fe3M (M=Al, Ga, Si and Ge) alloys whose crystal structure is DO3-type disordered structure which conforms to space group, have been investigated by using Local Spin Density Approximation (LSDA) and Generalized Gradient Spin Approximation (GGSA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. After the examination of ground states of our materials in DO3-type structure, their full structural, mechanical properties and electronic band structures have been investigated and made comparison between LSDA and GGSA. The calculated electronic band structures and total electronic density of states (DOS) within both of two approximation show that these alloys have metallic behavior. The calculated elastic constants and estimated mechanical properties depended on these constants indicate that these alloys are stable mechanically and have anisotropic behavior.

İlk Prensipler ile DO 3 -tipi Fe 3 M (M=Al, Ga, Si ve Ge) Tam Heusler Alaşımlarının İncelenmesi

Kristal yapısı DO3-tipi düzensiz yapıda olan ve Fm3̅m uzay grubuna uyan tam-Heusler Fe3M (M=Al, Ga, Si and Ge) alaşımları, Yoğunluk Fonksiyonel Teorisi (DFT) altında Yerel Spin Yoğunluk Yaklaşımı (LSDA) ve Genelleştirilmiş Gradient Spin Yaklaşımı (GGSA) kullanılarak VASP (Vienna Ab initio Simulation Package) yazılımı ile incelenmiştir. DO3-tipi yapıda olan malzemelerimizin taban durumlarının incelenmesinden sonra tam yapısal, mekaniksel özellikleri ve elektronik band yapıları incelenmiş ve GGSA ve LSDA arasında karşılaştırma yapılmıştır. Her iki yaklaşım içinde hesaplanan elektronik band yapıları ve toplam elektronik durum yoğunlukları (DOS) bu alaşımların metalik davranışa sahip olduklarını göstermektedir. Hesaplanan elastik sabitler ve bu elastik sabitlere bağlı olarak tahmin edilen mekaniksel özellikler bu alaşımların mekaniksel olarak kararlı ve anizotropik davanışa sahip olduklarına işaret eder.

___

Heusler F., “Über magnetische Manganlegierungen”, Verhandlungen der Deutschen Physikalischen Gesellschaft, German, 12: 219, (1903).

Potter H. H., “The X-ray Structure and Magnetic Properties of Single Crystals of Heusler Alloy”, Proceedings of Physical Society, 41: 135, (1928).

Bradley A. J., Rogers J. W., “The Crystal Structure of the Heusler Alloys”, Proceedings of The Royal Society A, 144 (852): 340, (1934).

Franco V., Blazquez J. S., Ingale B., Conde A., “The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models”, Annual Review of Materials Research, 42: 305, (2012)

Entel P., Buchelnikov V. D., Khovailo V. V., Zayak A. T., Adeagbo W. A., Gruner M. E., Herper H. C., Wassermann E. F., “Modelling the phase diagram of magnetic shape memory Heusler alloys”, Journal of Physics D: Applied Physics, 39: 865, (2006).

Yu S. Y., Liu Z. H., Liu G. D., Chen J. L., Cao Z. X., Wu G. H., Zhang B., Zhang X. X., “Large magnetoresistance in single-crystalline Ni50Mn50-xInx alloys (x=14-16) upon martensitic transformation”, Applied Physics Letters, 89: 162503, (2006).

Muthu S. E., Rao N. V. R., Rao D. V. S., Raja M. M., Devarajan U., Arumugam S., “Effect of Ni/Mn concentration on exchange bias properties in bulk Ni50- xMn37+xSn13 Heusler alloys”, Journal of Applied Physics, 110: 023904, (2011).

Krenke T., Duman E., Acet M., Wassermann E. F., Moya X., Manosa L., Planes A., Suard E., Ouladdiaf B., “Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In”, Physical Review B, 75: 104414, (2007).

Zhang B., Zhang X. X., Yu S. Y., Chen J. L., Cao Z. X., Wu G. H., “Giant magnetothermal conductivity in the Ni–Mn–In ferromagnetic shape memory alloys”, Applied Physics Letters, 91: 012510, (2007).

Kübler J., Williams A. R., Sommers C. B., “Formation and coupling of magnetic moments in Heusler alloys”, Physical Review B, 28: 1745, (1983).

Felser C., Fecher G. H., Balke B., “Spintronics: a challenge for materials science and solid ‐ state chemistry”, Angewandte Chemie (International ed. İn English), 46: 668, (2007).

Jung D., Koo H. J., Whangbo M. H., “Study of the 18- electron band gap and ferromagnetism in semi-Heusler compounds by non-spin-polarized electronic band structure calculations”, Journal of Molecular Structure (Theochem), 527: 113, (2000).

Wernick J. H., Hull G. W., Geballe T. H., Bernardini J. E., Waszczak J. V., “Superconductivity in ternary Heusler intermetallic compounds”, Materials Letters, 2: 90, (1983).

Gasi T., Ksenofontov V., Kiss J., Chadov S., Nayak A. K., Nicklas M., Winterlik J., Schwall M., Klaer P., Adler P., Felser C. “Iron-based Heusler compounds Fe2YZ: Comparison with theoretical predictions of the crystal structure and magnetic properties”, Physical Review B, 87: 064411, (2013).

Felser C., Hirohata A., “Heusler Alloys: Properties, Growth, Applications”, Springer Series in Materials Science, Switzerland, (2016).

Raja M. M., Kamat S. V., “Structure, Magnetic, and Electrical Properties of Heusler-Type Fe3-xCoxSi Ferromagnetic Alloys”, Metallurgical and Materials Transactions A, 46A: 4688, (2015).

Kogachi M., Fujiwara T., Kikuchi S., “Atomic disorder and magnetic property in Co-based Heusler alloys Co2MnZ (Z=Si, Ge, Sn)”, Journal of Alloys and Compounds, 475: 723, (2009).

Miura Y., Nagao K., Shirai M., “Atomic disorder effects on half-metallicity of the full-Heusler alloys Co2(Cr1-xFex)Al: A first-principles study”, Physical Review B, 69: 14413, (2004).

Kandpal H. C., Ksenofontov V., Wojcik M., Seshadri R., Felser C., “Electronic structure, magnetism and disorder in the Heusler compound Co2TiSn”, Journal of Physics D: Applied Physics, 40: 1587, (2007).

Picozzi S., Continenza A., Freeman A. J., “Role of structural defects on the half-metallic character of Co2MnGe and Co2MnSi Heusler alloys”, Physical Review B, 69: 094423, (2004).

Kresse G., Hafner, J., “Ab initio molecular dynamics for liquid metals”, Physical Review B, 47: 558, (1994).

Kresse G., Furthmüller J., “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”, Computational Material Science, 6: 15, (1996).

Blöchl P. E., “Projector augmented-wave method”, Physical Review B, 50: 17953, (1994).

Kresse G., Joubert J., “From ultrasoft pseudopotentials to the projector augmented wave method”, Physical Review B, 59: 1758, (1999).

Perdew J. P., Zunger A., “Self-interaction correction to density-functional approximations for many-electron systems”, Physical Review B, 23: 5048, (1981).

Perdew J. P., Burke K., Ernzerhof M., “Generalized Gradient Approximation Made Simple”, Physical Review Letters, 77: 3865, (1996).

Kohn W., Sham L. J., “Self-Consistent Equations Including Exchange and Correlation Effects”, Physical Review, 140: A1133, (1965).

Hohenberg P., Kohn W., “Inhomogeneous Electron Gas”, Physical Review, 136: B864, (1964).

Monkhorst H. J., Pack J. D., “Special points for Brillouin-zone integrations”, Physical Review B, 13: 5188, (1976).

Vinet P., Rose J. H., Ferrante J., Smith J. R., “Universal Features of the Equation of State of Solids”, Journal of Physics: Condensed Matter, 1: 1941, (1989).

Feng J., Xiao B., Chen J. C., Zhou C. T., “Theoretical study on the stability and electronic property of Ag2SnO3”, Solid State Sciences, 11: 259, (2009).

Matar S. F., Weihrich R., Kurowski D., Pfitzner A., “DFT calculations on the electronic structure of CuTe2 and Cu7Te4”, Solid State Sciences, 6: 15, (2004)

Rausch J. B., Kayser F. X., “Elastic constants and electrical resistivity of Fe3Si”, Journal of Applied Physics, 48: 487, (1977).

Moroni E. G., Wolf W., Hafner J., Podlocky R., “Cohesive, structural, and electronic properties of Fe- Si compounds”, Physical Review B, 59: 12860, (1999).

Hsu L. S., Wang Y. K., Guo G. Y., Lue C. S., “Experimental and theoretical study of the electronic structure of Fe3Al, Fe2VAl, and Fe2VGa”, Physical Review B, 66: 205203, (2002).

Christensen N. E., Kudrnovsky J., Rodriguez C. O., “Metamagnetic behavior in Fe3Si and Fe3Al”, International Journal of Material Science, 1: 1-15, (2007).

Paduani C., Bormio-Nunes C., “Density functional theory study of Fe3Ga”, Journal of Applied Physics, 109: 033705, (2011).

Page Y. L., Saxe P., “Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations”, Physical Review B, 63: 174103.1, (2001).

Grimvall G., “Thermophysical Properties of Materials”, Elsevier, New York, (1999).

Mouhat F., Coudert F. X., “Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems”, Physical Review B, 90: 224104, (2014).

Wu D. H., Wang H. C., Wei L. T., Pan R. K., Tang B. Y., “First-principles study of structural stability and elastic properties of MgPd3 and its hydride”, Journal of Magnesium and Alloys, 2: 165, (2014).

Voigt W., “Lehrbuch der Kristallphysik”, Springer, Berlin, (1928).

Reuss A., “Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle”, Journal of Applied Mathematics and Mechanics, 9: 49, (1929).

Hill R., “The Elastic Behaviour of a Crystalline Aggregate”, Proceedings of the Physical Society Section A, 65: 349, (1952).

Pugh S. F., “XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals”, Philosophical Magazine Series 7, 45: 823, (1954).

Greaves G. N., Greer A. L., Lakes R. S., Rouxel T., “Poisson’s ratio and modern materials”, Nature Materials, 10: 823, (2011).

Lau K., McCurdy A. K., “Elastic anisotropy factors for orthorhombic, tetragonal, and hexagonal crystals”, Physical Review B, 58: 14, (1998).

Schreiber E., Anderson O. L., Soga N., “Elastic Constants and Their Measurements”, McGraw-Hill, New York, (1973).

Anderson O. L., “A simplified method for calculating the debye temperature from elastic constants”, Journal of Physics and Chemistry of Solids, 24: 909, (1963).

Johnston I., Keeler G., Rollins R., Spicklemire S., “Solid State Physics Simulations (Consortium for Upper-Level Physics Software)”, Wiley, New York, (1996).

Deligoz E., Colakoglu K, Ciftci Y. O., “Ab Initio Study on Hypothetical Silver Nitride”, Chinese Physics Letters, 25: 2154, (2008)