Talaş Magnezyum Atığından Hidrojen Gazı Üretimi ve Hız Profillerinin İncelenmesi

Son yıllarda, yüksek potansiyele sahip olan enerji taşıyıcısı hidrojenin (H2) yakıt olarak kullanımı ve mevcut sistemler ile değiştirilmesine yönelik araştırmalar hız kazanmıştır. H2’nin sıfır emisyonlu üretimi, güvenli depolanması, etkin dağıtımı ve son kullanımda yüksek verimle enerjiye dönüştürülmesi, günlük hayatta kullanımının yaygınlaştırılması için önem arz etmektedir. Hidrojenin üretiminde, fosil temelli kaynaklar yerine sıfır emisyonlu alternatif tekniklerin geliştirilmesi hedeflenmektedir. Özellikle düşük ağırlıklı metaller içerisinden magnezyum (Mg)’un H2 üretiminde, bu hedefe ulaşmak amacıyla kullanılabilecek hammaddeler arasında yer almaktadır.  Mg ve Mg alaşımları başta otomotiv, uzay mühendisliği, metalürji ve kimya sektörleri olmak üzere pillerde ve katodik koruma gibi alanlarda kullanılırken, %50’lik kısmı atık olarak oluşmaktadır. Ancak, bu atıkların sadece %33’lük kısmı atık yönetimi kapsamında sınıflandırılarak tekrar kullanımı mümkün olmaktadır. Bu araştırma makalesinde, endüstriyel atık sınıfında yer alan talaş Mg’un H2 gazı üretiminde değerlendirilmesi amaçlanmıştır. Hidroliz reaksiyonu ile gerçekleşen H2 üretiminde, ortamda H+ iyonlarının geçişini hızlandıracak aktivatörün kullanımı gerekli olup ve klorür tuzları,  metaller ve asitler bu amaç doğrultusunda tercih edilmektedirler. Farklı konsantrasyonlardaki sirke çözeltilerinin (% 0.8-4 ağ. asetik asit, CH3COOH) hidroliz ortamında aktivatör olarak kullanımı incelenmiştir. Atık Mg talaşından hidrojen üretimi gerçekleştirilmiş ve H2 gazı üretim profilleri aydınlatılmıştır.

Hydrogen Gas Production from Chip Magnesium Waste and Investigation of Rate Profiles

In recent years, researches about the use of hydrogen (H2) as a high-potential energy carrier and replacement with current systems have been enhanced. Production of H2 with zero emission, safe storage, efficient distribution and, highly efficient energy conversion in end-use are the most important factors for popularizing the use of hydrogen energy systems in daily life. The main target is to develop alternative techniques to produced hydrogen with zero emission instead of fossil-based sources. In particular, magnesium (Mg) from light weight metals has been gain attention to achieve this target.  While, Mg and Mg alloys are mainly used as a raw material in automotive, space engineering, metallurgy and chemistry sectors, cells and cathodic protection, %50 of raw Mg is formed as a waste. However, only 33% of these wastes are classified based on waste managent and reused is being possible. In this research article, the evaluation of the industrial waste grade Mg chips in the production of H2 gas is studied. H2 production is carried out based on the hydrolysis reaction and it is necessary to use an activator which accelerates the passage of H+ ions and chlorine salts, metals and acids are preferred for this purpose. The usage of different concentrations of vinegar solutions (0.8-4 % wt. acetic acid, CH3COOH) as an activator in hydrolyses meduim was investigated. Hydrogen prodcution was carried our from waste Mg chip and H2 gas production profiles were illuminated.

___

  • [1] Uan J.Y., Yu S.H., Lin M.C., Chen L.F. and Lin H.I. “Evolution of hydrogen from magnesium alloy scraps in citric acid-added seawater without catalyst”, International Journal of Hydrogen Energy, 34: 6137-6142, (2009).
  • [2] Jain I.P., Lal C. and Jain A. “Hydrogen storage in Mg: a most promising material”, International Journal of Hydrogen Energy, 35: 5133-5144, (2010). [3] Wang S., Sun L.X., Xu F., Jiao C.L., Zhang J., Zhou H.Y., Huang F.L. “Hydrolysis reaction of ball-milled Mg-metal chlorides composite for hydrogen generation for fuel cells”, International Journal of Hydrogen Energy, 37: 6771-6775, (2012).
  • [4] Yu S.H., Uan J.Y. and Hsu T.L. “Effects of concentrations of NaCl and organic acid on generation of hydrogen from magnesium metal scrap”, International Journal of Hydrogen Energy, 37: 3033-3040, (2012).
  • [5] Liu Y., Wang X., Dong Z., Liu H., Li S., Ge H., and Yan M. “Hydrogen generation from the hydrolysis of Mg powder ball-milled with AlCl3”, Energy, 53: 147-152, (2013).
  • [6] Yavor Y., Goroshin S., Bergthorson J. M., and Frost, D. L. “Comparative reactivity of industrial metal powders with water for hydrogen production”, International Journal Of Hydrogen Energy, 40(2): 1026-1036, (2015).
  • [7] Javaid A., Essadiqi E., Bell S., and Davis B. “Literature review on magnesium recycling” Magnesium Technology, 7-12, (2006)
  • [8] Zou M.S., Guo X.Y., Huang H.T., Yang R.J. and Zhang P. “Preparation and characterization of hydro-reactive Mg-Al mechanical alloy materials for hydrogen production in seawater”, Journal of Power Sources, , 219: 60-64, (2012).
  • [9] Zou M.S., Yang R.J., Guo X.Y., Huang H.T., He J.Y. and Zhang P. “The preparation of Mg-based hydro-reactive materials and their reactive properties in seawater”, International Journal of Hydrogen Energy, 36: 6478-6483, (2011).
  • [10] Suryanarayana C., Ivanov E. and Boldyrev V.V. “The science and technology of mechanical alloying”, Materials Science and Engineering: A, 304-306: 151-158, (2001).
  • [11] Sun Q., Zou M., Guo X., Yang R., Huang H. and Huang P., “A study of hydrogen generatiy reaction of an activated Mg-CoCl2 (magnesium-cobalt chloride) composite with pure water for portable applications”, Energy, 79: 310-314, (2015).
  • [12] Grosjean, M. H. and Roue, L., “Hydrolysis of Mg-salt and MgH2-salt mixtures prepared by ball milling for hydrogen production”, Journal of Alloys and Compounds, 416: 296-302, (2006). [13] Liang J., Gao L.J., Miao N.N., Chai Y.J., Wang N. and Song X.Q. “Hydrojen generation by reaction ofAl-M (M=Fe,Co,Ni) with water”, Energy, 113: 282-287, (2016).
  • [14] Oh S., Kim M., Eom K., Kyung J., Kim D., Cho E. and Kwon H. “Design of MgeNi alloys for fast hydrogen generation from seawater and their application in polymer electrolyte membrane fuel cells”, International Journal of Hydrogen Energy, 41: 5296-5303, (2016).
  • [15] Huang M., Ouyang L., Wang H., Liu J., and Zhu M. “Hydrogen generation by hydrolysis of MgH2 and enhanced kinetics performance of ammonium chloride introducing”, International Journal of Hydrogen Energy, 40: 6145-6150, (2015).
  • [16] Grosjean M. H., Zidoune M., Roue L., and Huot J.-Y. “Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials”, International Journal of Hydrogen Energy, 31: 109-119, (2006).
  • [17] Huang J.M, Ouyang L.Z., Wen Y.J, Wang H., Liu J.W., Che, Z.L. and Zhu M., “Improved hydrolysis properties of Mg3RE hydrides alloyed with Ni”, International Journal of Hydrogen Energy, 39: 6813-6818, (2014).
  • [18] Ouyang L.Z., Wen Y., Xu Y., Yang X.S., Sun L.X. and Zhu M. “The effect of Ni and Al addition on hydrogen generation of Mg3La hydrides via hydrolysis”, International Journal of Hydrogen Energy, 35: 8161-8165, (2010).
  • [19] Ouyang L.Z., Xu Y.J., Dong H.W., Sun L.X. and Zhu M. “Production of hydrogen via hydrolysis of hydrides in Mg–La system”, International Journal of Hydrogen Energy, 34: 9671-9676, (2009).
  • [20] Kantürk Figen, A., Coşkuner B. and Pişkin S. “Hydrogen generation from waste Mg based material in various saline solutions (NiCl2, CoCl2, CuCl2, FeCl3, MnCl2)”, International Journal of Hydrogen, 40: 24:7483-7489, (2015).
  • [21] Kantürk Figen, A. ve Coşkuner Filiz, B., “Hydrogen productin by the hydrolysis of milled waste magnesium scraps in nickel chloride solutions and nickel chloride added in Marmara Sea and Aegean Sea Water”, International Journal of Hydrogen Energy, 40: 16169-16177, (2015).
  • [22] Kantürk Figen, A., ve Pişkin, S. “Characterization and modification of waste magnesium chip utilized as an Mg-rich intermetallic composite”. Particuology, 17: 158-164, (2014).
  • [23] Öz Çisem, Coşkuner Filiz, ve B., Kantürk Figen, A. “The effect of vinegareacetic acid solution on the hydrogen generation performance of mechanochemically modified Magnesium (Mg) granules”, Energy, 127: 328-334, (2017).