Talaş kaldırma işlemlerinde kesici takım ve talaş arasında oluşan sıcaklık dağılımının sonlu farklar metodu ile analizi

Kesme sıcaklığı, takım aşınması, yüzey kalitesi ve talaş oluşumunun kontrolünde önemli bir faktördür. Takım talaş ara yüzeyinde sıcaklık artışının belirlenmesi, en iyi kesme performansını sağlamak açısından önemli bir parametre olarak tanımlanır. Bu çalışmada, sürekli işleme halinde takım ve talaş ara yüzeyindeki sıcaklığı belirlemek için, sonlu farklar metoduna dayalı nümerik bir model seçilmiştir. Dik kesme işlemlerinde, sürekli kesme halinde takım talaş kesme yüzeyi temas bölgesinde, takım talaş arasında oluşan ısı transfer analizi yapılmıştır. Birinci bölgede oluşan kayma enerjisi, ikinci bölgedeki kesici yüzey ile talaş temas bölgesinde oluşan sürtünme enerjisi ve sabit haldeki kesici takım ve hareket halindeki talaş arasındaki ısı dengesi ele alınmıştır. Birinci ve ikinci bölgedeki sıcaklık dağılımı sonlu farklar metodunu kullanan FORTRAN dilinde bir bilgisayar programıyla çözülmüştür. Matematiksel model ve elde edilen simülasyon sonuçları literatürde belirtilen deneysel değerlerle kabul edilir derecede uyumludur.

Analysis of temperature distribution between tool and chip in metal cutting operations by using finite difference method

Cutting temperature is a major factor in controlling the tool wear, surface quality and chip formation mechanics. To understand the exact temperature rise in the tool chip interface has been recognized as an important study in achieving the best cutting performance. In this paper, a numerical model based on the finite difference method is presented to predict the temperature between tool and chip interface in continuous machining process. Continuous or steady-state machining operations in orthogonal cutting are studied by modeling the heat transfer between the tool and chip at the tool rake face contact zone. The shear energy created in the primary zone, the friction energy produced at the rake face chip contact zone in the secondary zone and the heat balance between the moving chip and stationary tool are considered. The primary and secondary zone temperature distribution was solved by a computer program written in FORTRAN using finite difference method. The mathematical model and simulation results are satisfactory compared with experimental measurements reported in the literature.

___

  • 1. Trigger, K.J., Chao, B.T., An Analytical Evaluation of Metal cutting Temperatures, Transactions of ASME ,73, 57-68,1951.
  • 2. Ren, H., Altıntas, Y., Mechanics of machining with chamfered tools, Trans. ASME, Journal of Manufacturing and Engineering and Science, 122, 650–659, 2000.
  • 3. Smith, A.J.R., Armarego, J.A., Temperature prediction in orthogonal cutting with a finite difference approach, Annals of CIRP, 1981.
  • 4. Stephenson, D.A., Jen, T.C., Lavine, A.S., Cutting tool temperatures in contour turning: transient analysis and experimental verification, ASME, Journal of Manufacturing Science and Engineering, 119, 494–501, 1997.
  • 5. Radulescu, R., Kapoor, S.G., An analytical model for prediction of tool temperature Fields during continuous and interrupted cutting, Transactions of ASME, Journal of Engineering for Industry, 116, 135–140, 1994.
  • 6. Lazoğlu, İ., Altıntaş, Y., Prediction of tool and chip temperature in continuous and interrupted machining, International Journal of Machine tools and manufacture, 42, 1011- 1022, 2002.
  • 7. Nedelik, J., Lux, B., Improved tool performance by aplication of head spreading diamond layers within a multi-layer coating, International Journal of Refractory Metals and Hard materials, 17, 275-282, 1999.
  • 8. Q’Sullivan, D., Cotterell, M., Temperature Measurement in single point turning, Journal of materials Processing Technology, 118, 301-308, 2001.
  • 9. Chen, W.C., Tsao, C.C., Liang P.W., Determination of temperature distributions on the rake face of cutting tools using a remote method, Int. Comm. Heat Mass Transfer, 24- 2, 161-170, 1997.
  • 10. Liu, Y,R., Liu, J,J., Zhu, B.L., Luo, Z.B., Miao, H.Z., The computer simulation of the temperature distribution on the surface of ceramic cutting tools, Wear, 210, 39-44, 1997.
  • 11. Ay, H., Yang, W.J., Heat transfer and Life of metal cutting tools in turning, Int.J. Heat Mass transfer 41-3, 613-623,
  • 12. Komanduri, R., Hou, Z.B., Thermal modelling of the metal cutting process Part 1: Temperature rise distribution due to shear plane heat source, International Journal of Mechanical Sciences, 42, 1715-1752, 2000.
  • 13. Komanduri, R., Hou, Z.B., Thermal modelling of the metal cutting process Part III: Temperature rise distribution due to the combined effects of shear plane heat source and tool chip interface frictional heat source, International Journal of Mechanical Sciences, 43, 89-107, 2001.
  • 14. Komanduri, R., Hou, Z.B., Thermal modelling of the metal cutting process Part II: Temperature rise distribution due to frictional heat source at the tool chip interface, International Journal of Mechanical Sciences, 43, 57-88, 2001.
  • 15. Kwon, P., Schiemann, T., Kountanya, R., An inverse estimation scheme to measure steadystate tool-chip interface temperatures using an infrared camera, International Journal of Machine Tools & Manufacture, 41, 1015–1030, 2001.
  • 16. Modern Metal Cutting, A practical handbook, Sandvik Coromant, 1994.
  • 17. Oxley, P.L.B., Mechanics of Machining: An Analytical Approach to Assessing Machinability, John Wiley & Sons, New York, USA, 1989.
  • 18. Stephenson, D. A., Ali, A, Tool Temperatures in Interrupted Metal Cutting, Journal of Engineering for Industry, 114, 127-136, 1992.
  • 19. Altıntaş, Y., Manufacturing Automation, Cambridge University Press, 2000.
  • 20. Özışık, M. N., Finite Difference Methods in Heat Transfer, Mechanical and Aerospace Engineering Department, North Carolina State University, 1994.
  • 21. Incropera, F., P., Dewıtt, D., P., Fundamentals of Heat and Mass Transfer, Purdue University, School of Mechanical Engineering, John Wiley&Sons, 1996.