SnO2 ve Zn0.50Sn0.50O Sensörlerinin Düşük NO Gaz Konsantrasyonu Algılama Özellikleri

Bu çalışmada, SnO2 ve Zn0.50Sn0.50O örnekleri Ardışık İyonik Katman Adsorpsiyon ve Reaksiyon yöntemiyle 3 farklı döngüde üretildi ve NO gaz algılama özellikleri incelendi. Üretilen numunenin farklı sıcaklıklarda (35°C-135°C) ve farklı gaz konsantrasyonlarında (50 ppb-25 ppm) elektriksel karakterizasyonu yapıldı. Çalışma sıcaklığı 105 C olarak bulundu. Sensörler 50 ppb NO gazına karşı kabul edilebilir düzeyde duyarlılık sergiledi. Zn0.50Sn0.50O sensörü, 105 °C çalışma sıcaklığında SnO2 sensörüne kıyasla daha yüksek algılama performansı gösterdi. 20, 30 ve 40 döngü SnO2 sensörlerinin 50 ppb NO gaz konsantrasyonu için gösterdiği duyarlılıklar sırasıyla % 1.74,% 2.15 ve% 3.37 olarak hesaplandı. Öte yandan, Zn0.50Sn0.50O sensörlerinin 50 ppb NO gaz konsantrasyonu için gösterdiği duyarlılıklar sırasıyla % 3.01,% 3.74 ve % 4.16 olarak elde edilmiştir.Ölçüm sonuçları, numunelerin gaz algılama özelliklerinin katkılama ve üretim döngüsüne bağlı olarak değiştiğini gösterdi.

Low concentration NO gas detection of SnO2 and Zn0.50Sn0.50O sensors

In this study, the gas sensing properties of SnO2 and Zn0.50Sn0.50O samples produced by Succession Ionic Layer Adsorption andReaction (SILAR) method with different SILAR cycles against NO gas were investigated. Electrical characterization of theproduced sample at different temperatures (35 °C-135 °C) and different gas concentrations (50 ppb-25 ppm) were performed. Theworking temperature was found at 105 C. The sensors were proved to have acceptable responses towards 50 ppb NO gas.Zn0.50Sn0.50O sensor exhibited improved sensing performance at working temperature of 105 C compared to SnO2 sensor.. The,responses of SnO2 sensors for the 50 ppb NO gas concentration, sensitivities of 1.74%, 2.15% and 3.37% were obtained for 20,30 and 40 cycles, respectively. On the other hand, the,responses of Zn0.50Sn0.50O sensors for the 50 ppb NO gas concentrationsensitivities of 3.01%, 3.74% and 4.16% were obtained for 20, 30 and 40 cycles, respectively. The measurement results showedthat the sensitivity of the sensors changed depending on the doping and producing cycles.

___

  • [1] Onofre Y.J., Catto A.C., Bernardini S., Fiorido T., Aguir K., Longo E., Mastelaro V.R., da Silva L.F. and de Godoy M.P.F., “Highly selective ozone gas sensor based on nanocrystalline Zn0.95Co0.05O thin film obtained via spray pyrolysis technique”, Appl. Surf. Sci., 478: 347–354, (2019).
  • [2] Shah C., Dixit R. and Anand A.K., “Nitric Oxide In Health And Diseases”,Global Journal of Medicine and Public Health, GJMEDPH, 1(1): 73-78, (2012).
  • [3] Khazan M. and Hdayati M., “The Role of Nitric Oxide in Health and Diseases”, Scimetr. 3(1): 20987, (2015).
  • [4] Rei Vilar M., El-Beghdadi J., Debontridder F., Naaman A. Arbel R., Ferraria A.M. and Botelho Do Rego A.M., “Development of nitric oxide sensor for asthma attack prevention”, Materials Science and Engineering C 26: 253 – 259, (2006).
  • [5] Gao H., Yu Q., Chen K., Sun P., Liu F., Yan X., Liu F., Lu G., Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO3-NiO) nanoflowers for fast and selective xylene detection, J. Colloid Interface Sci., 535: 458-468, (2019).
  • [6] Samerjai T., Channei D., Khanta C., Inyawilert K.,Liewhiran C., Wisitsoraat A., Phokharatkul D. and Phanichphant S., “Flame-spray-made Zn-In-O alloyed nanoparticles for NO2 gas sensing”, J Alloy. Compd., 680, 711-721, (2016).
  • [7] Bai S., Tong W., Tian Y.,Fu H.,Zhao Y.,Shu X., Luo R., Li D. and Chen A., “Facile synthesis of Pddoped ZnSnO3 hierarchical microspheres for enhancing sensing properties of formaldehyde”, J. Mater. Sci., 54(3): 2025–2036, (2019).
  • [8] Karaduman I., Barin Ö., Yıldız D.E. and Acar S., “Atomik Tabaka Biriktirme Metodu ile Üretilen HfO2 Tabanlı Sensörlerin Hidrojen Gaz Algılama Özelliklerinin İncelenmesi”, Journal of Polytechnic, 19(3): 223-229, (2016).
  • [9] Kumar V., Singh K., Sharma J., Kumar A., Vij A. and Thakur A., “Zn-doped SnO2 nanostructures: structural, morphological and spectroscopic properties”, J. Mater. Sci.: Mater. Elektron, 28(24): 18849–18856, (2017).
  • [10] Saadeddin I., Hilal H.S., Pecquenard B., Marcus J., Mansouri A., Labrugere C., Subramanian M.A. and Campet G., “Simultaneous doping of Zn and Sb in SnO2 ceramics: Enhancement of electrical conductivity”, Solid State Sci., 8(1): 7-13, (2006).
  • [11] Guan Y., Wang D., Zhou X., Sun P., Wang H., Ma J. and Lu G., “Hydrothermal preparation and gas sensing properties of Zn-doped SnO2 hierarchical architectures”, Sens. Actuators B, 191: 45-52, (2014).
  • [12] Gupta P., Sharma S.K., A study of oxygen gas sensing in Zn-doped SnO2 nanostructures, Mater. Res. Express, 4: 065010, (2017).
  • [13] Singh D., Singh Kundu V. and Maan A. S., “Structural, morphological and gas sensing study of zinc doped tin oxide nanoparticles synthesized via hydrothermal technique”, J. Mol. Struct., 1115: 250-257, (2016).
  • [14] Galioglu S. , Karaduman I., Çorlu T. , Akata B. , Yıldırım M. A. , Ateş A. and Acar S. , “Zeolite A coated Zn1−XCuXO MOS sensors for NO gas detection”, J. Mater. Sci.: Mater. Elektron, 29(2): 1356-1368, (2018).
  • [15] Çorlu T., Karaduman I., Galioglu S., Akata B., Yıldırım M.A., Ates A. and Acar S., “Low level NO gas sensing properties of Cu doped ZnO thin films prepared by SILAR method”, Mater. Lett., 212: 292–295 (2018).
  • [16] Soltabayev B., Karaduman Er I., Surel H., Coşkun A, Yıldırım M.A., Ateş A. and Acar S., “Influence of Ni doping on the nitric oxide gas sensing properties of Zn1−xNixO thin films synthesized by silar method”, Mater. Res. Express 6: 086419, (2019).
  • [17] Karaduman Er I., Çağırtekın A.O., Çorlu T., Yıldırım M.A., Ateş A. and Acar S., “Low-level NO gas sensing properties of Zn1−xSnxO nanostructure sensors under UV light irradiation at room temperature”, Bull. Mater. Sci., 42(32), (2019).
  • [18] Vermaa M., Dwivedib P. K. and Das B., “Structure– property correlation of pure and Sn-doped ZnO nanocrystalline materials prepared by coprecipitation”, Journal of Experimental Nanoscience, 10(6): 438–448, (2015).
  • [19] Zhang Z., Yi J.B., Ding J.,Wong L.M., Seng H.L. and Wang S.J. “Cu-Doped ZnO Nanoneedles and Nanonails: Morphological Evolution and Physical Properties”, J. Phys. Chem. C, 112: 9579, (2008).
  • [20] Patıl A., Dıghavkar C., and Borse R., “Al Doped Zno Thick Films As CO2 Gas Sensors”, J. Optoelectron Adv. M., 13(10): 1331-1337, (2011).
  • [21] Zhou Q., Chen W., Xu L., Kumar R., Gui Y., Zhao Z., Tang C. and Zhu S., “Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials”, Ceram. Int. 44: 4392– 4399, (2018).
  • [22] Zheng L., Xu T., Li G. and Q Yin, “Influence of thickness on oxygen-sensing properties of TiO2 thin films on Al2O3,” J. Appl. Phys., Part 1 41: 4655- 4658, (2002).
  • [23] Hossein-Babari F. and Orvatinia M., “Analysis of thickness dependence of the sensitivity in thin film resistive gas sensors”, Sens. Actuators B 89: 256- 261, (2003).
  • [24] Christoulakis S., Suchea M., Koudoumas E., Katharakis M., Katsarakis N. and Kiriakidis G., “Thickness influence on surface morphology and ozone sensing properties of nanostructured ZnO transparent thin films grown by PLD”, Appl. Surf. Sci., 252: 5351-5354, (2006).
  • [25] Çorlu T., Karaduman I.,Yildirim M.A., Ateş A. and Acar S., “Effect of Doping Materials on the LowLevel NO Gas Sensing Properties of ZnO Thin Films”, J. Electron. Mater., 46(7): 3995–4002, (2017).
  • [26] Najafi V., Zolghadr S. and Kimiagar S., “Remarkable reproducibility and significant sensitivity of ZnO nanoparticles covered by Chromium (III) oxide as a hydrogen sulfide gas sensor”, Optik - International Journal for Light and Electron Optics 182: 249–256, (2019).
  • [27] Chang B.-Y., Wang C.-Y., Lai H.-F., Wu R.-J. and Chavali M., “Evaluation of Pt/In2O3–WO3 nano powder ultra-trace level NO gas sensor”, Journal of the Taiwan Institute of Chemical Engineers 45: 1056–1064, (2014).
  • [28] Yuliarto B., Ramadhani M.F. and Wieno H. Nugraha. “Fabrications of NO Gas Sensors Based on ZnO Nanorod Thin Films”, International Journal of Materials Science and Engineering 2(1): 1, (2014)
  • [29] Wu M.-R., Li W.-Z., Tung C.-Y., Huang C.-Y., Chiang Y.-H., Liu P.-L. and Horng R.-H., “NO gas sensor based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition”, Scientific Reports 9: 7459, (2019).
  • [30] Akamatsu T., Itoh T., Izu N. and Shin W., “NO and NO2 Sensing Properties of WO3 and Co3O4 Based Gas Sensors”, Sensors 13: 12467-12481, (2013)
  • [31]Lin, C.-H., Chang, S.-J., and Hsueh, T.-J., “A WO3 Nanoparticles NO Gas Sensor Prepared by HotWire CVD”. IEEE Electron Device Letters, 38(2): 266–269, (2017).
  • [32] Lin, C.-Y., Chen, J.-G., Feng, W.-Y., Lin, C.-W., Huang, J.-W., Tunney, J. J., and Ho, K.-C. “Using a TiO2/ZnO double-layer film for improving the sensing performance of ZnO based NO gas sensor”. Sens. Actuators B, 157(2): 361–367, (2011).
  • [33] Fang Y.Y., Lin C.W., Tunney J.J., and Ho K.C.. “Fabrication of NOx gas sensors using In2O3– ZnO composite films”. Sens Actuators B, 146: 28–34. (2010).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ