Sıvı Akışkan Tipli PV/Termal Kolektörlerin Verimliliğini Etkileyen Performans Parametrelerinin Farklı Tasarlanmış Soğurucular ile Deneysel İncelenmesi

Bu çalışmada; güneş enerjisini hem elektrik enerjisine hem ısıl enerjiye dönüştüren, su tipli fotovoltaik/termal (PV/T) kollektörlerin verimlilikleri incelenmiştir. Özdeş fotovoltaik (PV) hücreler kullanılarak; bir adet PV modül ve farklı çaplar, miktar ve dizilimlere sahip soğurucu borular ve soğurucu levhalar kullanılarak, laminasyon tekniği ile, beş adet PV/T kollektör üretilmiştir. Öncelikle; Standard Test Koşulları’nda bir güneş simülatörü ile tüm numunelerin elektriksel verimliliği test edilmiştir. STK’da verimlilik değerleri %12,56 ile %12,68 olarak ölçülmüştür. Sonrasında; PV/T numuneleri kullanılarak, dış ortam koşullarında ısıl enerjinin PV modüllere olan etkisi incelenmiştir. Numunelerin verimliliklerini tespit için; güneş ışınımı, voltaj ve akım değerleri, PV-T modüllerdeki su giriş, çıkış sıcaklıkları, suyun debisi ve dış ortam sıcaklığı gibi değerler ölçümlenmiştir. Su devir daiminin hücrelerin soğumasına etkisinden kaynaklı, PV/T kollektörlerdeki elektriksel verimin PV modüldekinden fazla olduğu gözlemlenmiştir. PV/T kollektörler arasında en yüksek ısıl verimliliğe sahip örnek de tespit edilmiştir. PV/T kollektörlerin, dış ortam koşullarındaki toplam verimliliklerinin %60,68 ile %67,14 arasında olduğu görülmüştür.

Experimental Investigation on Performance Parameters Affecting the Efficiency of Water Type PV/Thermal Collectors with Modified Absorber Configurations

In this study, efficiency of water-type photovoltaic/thermal (PV/T) modules that convert solar energy into both electrical andthermal energy were investigated. By using identical photovoltaic (PV) cells, one PV module and five PV/T modules differed inthermal structure with different diameters, amount and layout of absorber tubes, and type of absorber sheets were fabricated withlamination technique. Firstly, the electrical efficiency of all samples under Standard Test Conditions was tested by a solar simulator.Efficiency values were between 12.56% and 12.68% under STC. Furthermore, outdoor tests were carried out to investigate theeffect of temperature on PV modules in ambient conditions using PV/T samples. In order to determine the efficiency of the units,parameters such as solar irradiation, voltage and current values, inlet and outlet water temperature and flow rate of PV/T modulesand ambient temperature were measured. It was observed that the electrical performance of PV/T modules was higher than that ofthe PV module due to the cooling effect of water circulation over the cells. PV/T module with the highest thermal efficiency wasalso determined. Total efficiency value of PV/T modules in outdoor conditions were attained between 60.68% and 67.14%.

___

  • [1] Dag, H. I.; Buker, M. S., “Performance evaluation and degradation assessment of crystalline silicon based photovoltaic rooftop technologies under outdoor conditions”, Renewable Energy, (2019).
  • [2] Buker, M. S.; Riffat, S. B., “Preliminary performance test of a combined solar thermal roof system with heat pump for buildings”, Energy Procedia, 91: 421-431, (2016).
  • [3] Perlin, J., “Let it shine: the 6,000-year story of solar energy”, New World Library, (2013).
  • [4] www.iea.org, “Solar PV report”, (2019).
  • [5] Buker, M. S.; Riffat, S. B., “Performance analysis of a combined Building Integrated PV/T Collector with a liquid desiccant enhanced dew point cooler”, Energy Procedia, 91: 717-727, (2016).
  • [6] Böer, K. W.; Tamm, G., “Solar conversion under consideration of energy and entropy”, Solar Energy, 74(6): 525-528, (2003).
  • [7] Zondag, H. A. “Flat-plate PV-Thermal collectors and systems: A review”, Renewable and Sustainable Energy Reviews, 12(4): 891-959, (2008).
  • [8] Kalogirou, S. A.; Tripanagnostopoulos, Y., “Hybrid PV/T solar systems for domestic hot water and electricity production”, Energy conversion and management, 47(18-19): 3368-3382, (2006).
  • [9] Koç, İ.; Başaran, K., “PV/T Tabanlı Bir Sistemde MATLAB/Simulink Kullanılarak Yapılan Performans Analizi”, Politeknik Dergisi, 22(1): 229-236.
  • [10] Kumar, R.; Rosen, M. A., “Performance evaluation of a double pass PV/T solar air heater with and without fins”, Applied Thermal Engineering, 31(8-9): 1402- 1410, (2011).
  • [11] Al-Waeli, A. H., Sopian, K., Kazem, H. A., Yousif, J. H., Chaichan, M. T., Ibrahim, A., ... & Ruslan, M. H., “Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network”, Solar Energy, 162: 378-396, (2018).
  • [12] Rejeb, O.; Dhaou, H.,; Jemni, A., “A numerical investigation of a photovoltaic thermal (PV/T) collector”, Renewable Energy, 77: 43-50, (2015).
  • [13] Liang, R., Zhang, J., Ma, L., & Li, Y., “Performance evaluation of new type hybrid photovoltaic/thermal solar collector by experimental study”, Applied Thermal Engineering, 75: 487-492, (2015).
  • [14] Aste, N.; Leonforte, F.; Del pero, C., “Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector”, Solar Energy, 112: 85-99, (2015).
  • [15] Neamen, D. A., “Semiconductor physics and devices: basic principles”, New York, NY: McGraw-Hill,, (2012).
  • [16] Möller, H. J., “Semiconductors for solar cells”, Artech House Publishers, (1993).
  • [17] Duffie, J. A.; Beckman, W. A., “Solar engineering of thermal processes”, New York: Wiley, (1991).
  • [18] Radziemska, E., “Thermal performance of Si and GaAs based solar cells and modules: a review”, Progress in Energy and Combustion Science, 29(5): 407-424, (2003).
  • [19] Buker, M. S.; Riffat, S. B., “Building integrated solar thermal collectors–A review”, Renewable and Sustainable Energy Reviews, 51: 327-346, (2015).
  • [20] Zondag, H. A., “Flat-plate PV-Thermal collectors and systems: A review”, Renewable and Sustainable Energy Reviews, 12(4): 891-959, (2008).
  • [21] Charalambous, P. G., Kalogirou, S. A., Maidment, G. G., & Yiakoumetti, K. (2011), “Optimization of the photovoltaic thermal (PV/T) collector absorber”, Solar energy, 85(5): 871-880, (2011).
  • [22] Hottel, H., & Whillier, A., “Evaluation of flat-plate solar collector performance”, In Trans. Conf. Use of Solar Energy 3: (1955).
  • [23] He, W., Chow, T. T., Ji, J., Lu, J., Pei, G., & Chan, L. S., “Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water”, Applied energy, 83(3): 199-210, (2006).
  • [24] Vokas, G.; Christandonis, N.; Skittides, F. “Hybrid photovoltaic–thermal systems for domestic heating and cooling—a theoretical approach”, Solar Energy, 80(5): 607-615, (2006).
  • [25] Chow, T. T.; HE, W.; JI, J. “An experimental study of facade-integrated photovoltaic/water-heating system”, Applied thermal engineering, 27(1): 37-45, (2007).
  • [26] Tripanagnostopoulos, Y., Souliotis, M., Battisti, R., & Corrado, A., “Energy, cost and LCA results of PV and hybrid PV/T solar systems”, Progress in Photovoltaics: Research and applications, 13(3): 235-250, (2005).
  • [27] Dağ, H. İ. “Pv-termal kolektörlerin tasarımı, üretimi ve verimini etkileyen parametrelerin belirlenmesi”, PhD Thesis. Doktora Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, (2015).