R260 Ray Çeliğinin Değişen Sıcaklıklardaki Davranışının EMI Yöntemi ile İncelenmesi

Yapısal sağlık izleme (SHM)’de son yıllarda Elektromekanik Empedans (EMI) yöntemi yaygın olarak kullanılmaktadır. Bu yöntemde yapısal sağlığı denetlenecek yapıya kurşun-zirkonat-titanat (PZT) seramik sensör yaması eklenir. Empedans analizör kullanılarak empedans ve admittans karakteristikleri ölçülür. Bu ölçümler yapısal sağlığın değerlendirilmesinde referans karakteristiğini oluşturur. Bu karakteristiklerin yapıda hata, kusur vb. olmadığı sürece değişmemesi beklenir. Ancak değişen çevresel koşullar ve sıcaklık dalgalanmaları gibi bazı durumlarda bu karakteristiklerin değiştiği bilinmektedir. Eğer sıcaklık etkisi dikkate alınmazsa, yapıda hata, kusur vb. olmadığı halde varmış gibi yanlış yorumlamalara yol açar. Raylar sürekli olarak değişen çevresel koşullara maruz kalmaktadır. Bu çalışmada, R260 ray çeliğinin değişen sıcaklıklardaki davranışı EMI yöntemi kullanılarak incelenmiştir. Yapılan deneysel çalışmaların sonucunda, sıcaklık azaldıkça frekans ve genliğin değiştiği gözlenmiştir. Bu değişim hasar metrikleri kullanılarak yorumlanmıştır.

Investigation of the R260 Rail Steel Behavior at Varying Temperatures by EMI Method

In recent years, Electromechanical Impedance (EMI) method has been widely used in structural health monitoring (SHM). In this method, lead zirconate titanate (PZT) ceramic sensor patch is added to the structure to be monitored for structural health. Impedance and admittance characteristics are measured using an impedance analyzer, which forms the reference characteristic in the evaluation of structural health. It is expected that these characteristics will not change as long as there is no change in the structure. However, it is known that these characteristics change in some situations, such as exposure to external environmental conditions and temperature fluctuations. If the effect of temperature is not taken into account, it leads to misinterpretations as if there were faults in the structure. Rails are exposed to changing environmental conditions continuously. In this study, the behavior of the R260 rail steel at varying temperatures is investigated using the EMI method. As a result of the experimental studies, it has been observed that frequency and amplitude change with decreasing temperature. This change has been interpreted using damage metrics. 

___

  • 1. Aktan A. E., Helmicki A. J. and Hunt V. J., “Issues in health monitoring for intelligent infrastructure”, Smart Materials and Structures, 7(5): 674-692, (1998).
  • 2. Doebling S. W., Farrar C. R. and Prime, M. B., “A summary review of vibration-based damage identification methods”, The Shock and Vibration Digest, 30(2): 91-105, (1998).
  • 3. Shankar R., “An integrated approach for structural health monitoring”, PhD thesis, Indian Institute of Technology Delhi, (2009).
  • 4. Siebel, T. and Lilov, M., “Experimental investigation on improving electromechanical impedance based damage detection by temperature compensation”, Key Engineering Materials, 569: 1132-1139, (2013).
  • 5. Baptista F. G., Budoya D. E., De Almeida V. A. and Ulson J. A., “An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring”, Sensors (Basel), 14(1): 1208-1227, (2014).
  • 6. Zou, D., Liu, T., Liang, C., Huang, Y., Zhang, F., Du, C., “An experimental investigation on the health monitoring of concrete structures using piezoelectric transducers at various environmental temperatures”, Journal of Intelligent Material Systems and Structures, 26(8): 1028-1034, (2015).
  • 7. Wandowski T., Malinowski P. H. and Ostachowicz W. M., 2016, “Delamination detection in CFRP panels using EMI method with temperature compensation, Composite Structures, 151: 99-107, (2016).
  • 8. Xu G., Xu B., Xu C. and Luo Y., “Temperature effects in the analysis of electromechanical impedance by using spectral element method”, Multidiscipline Modeling in Materials and Structures, 12(1): 119-132, (2016).
  • 9. Haider M. F., Giurgiutiu V., Lin B. and Yu L., “Irreversibility effects in piezoelectric wafer active sensors after exposure to high temperature”, Smart Materials and Structures, 26(9): 095019, (2017).
  • 10. Vishay Micro-Measurements, “Strain Gages and Instrumentation Knowledge base”. http://www.vishaypg.com/micro-measurements/stress-analysis-strain-gages/knowledge-base-list/ and http://www.vishaypg.com/micromeasurements/videos/?video513, (2013).
  • 11. Giurgiutiu V., “Structural health monitoring with piezoelectric wafer active sensors”, Second Edition, Elsevier, U.S.A., (2014).
  • 12. Rabelo, D.S., Steffen, V., Neto, R.M.F. and Lacerda, H.B., “Impedance-based structural health monitoring and statistical method for threshold-level determination applied to 2024-T3 aluminum panels under varying temperature”, Structural Health Monitoring, 16(4), 365-381, (2017).
  • 13. Sepehry, N., Shamshirsaz, M. and Bastani, A., “Experimental and theoretical analysis in impedance-based structural health monitoring with varying temperature”, Structural Health Monitoring, 10(6), 573-585, (2010).
  • 14. Sepehry, N., Shamshirsaz, M. and Abdollahi, F., “Temperature variation effect compensation in impedance-based structural health monitoring using neural networks”, Journal of Intelligent Material Systems and Structures, 22(17), 1975-1982, (2011).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ