Nikel-Titanyum Şekil Bellekli Alaşımların Süperelastik Davranışına Isıl İşlemin Etkisi

Şekil bellekli alaşımlar (ŞBA), mikroyapıda östenit ve martenzit fazlar arasında tersinir termoelastik faz dönüşümü ile makroyapıda şekil belleği ve süperelastik davranış gösterebilen intermetalik malzemelerdir. Nikel-titanyum (NiTi) ŞBA`lar süperelastik özelliği sebebiyle başta biyomedikal uygulamalar olmak üzere birçok alanda hızla yaygınlaşmaktadır. Bu çalışmada, atomik olarak % 50.8 nikel içeren NiTi numunelere uygulanan ısıl işlemin, alaşımın faz dönüşüm sıcaklığı ve süperelastik davranışına etkisi incelenmiştir. Yapılan diferansiyel taramalı kalorimetri (DSC) analizleri ve çekme testlerinde elde edilen sonuçlar karşılaştırılmıştır. Çözeltiye alma ve  yaşlandırma ısıl işlemlerinin, NiTi numunelerin süperelastik davranış gösterme karakteristiğini artırdığı deneysel sonuçlarla gözlemlenmiştir. 

___

  • 1. Janocha H., Adaptronics and Smart Structures, Springer, (2007).
  • 2. Khoo Z. X., Teoh J. E. M., Liu Y., Chua C. K., Yang S., An J., Leong K. F., Yeong W.Y. “3D printing of smart materials: A review on recent progresses in 4D printing”, Virtual and Physical Prototyping, (2015).
  • 3. Calkins F.T. and Mabe, J.H. “Shape Memory Alloy Based Morphing Aerostructures”, Journal of Mech. Design, 132, 111012 (2010).
  • 4. Ades C., Dilibal S. and Engeberg ED. “Exoskeleton for tubular shape memory alloy finger with internal cooling and a superelastic SMA spring return”, ASME Florida Conference on Recent Advances in Robotics, Miami, Florida, (2016).
  • 5. Peduk G.S.A., Dilibal S., Harrysson O. and Özbek S. “Comparison of the production processes of nickel-titanium shape memory alloy through additive manufacturing”, Int. Symposium on 3D Printing (Additive Manufacturing, Istanbul, (2017).
  • 6. Ojha A. and Sehitoglu H., “Critical stresses for twinning, slip, and transformation in Ti-based shape memory alloys, Shape Memory and Superelasticity”, Shape Memory and Superelasticity, (2016).
  • 7. Rao A., Srinivasa A.R., Reddy J. N. “Design of Shape Memory Alloy (SMA) Actuators” Springer Briefs in Applied Sciences and Technology (2015).
  • 8. Dilibal S., “Investigation of nucleation and growth of detwinning mechanism in martensitic single crystal NiTi using digital image correlation”, Metallography, Microstructure, and Analysis, 2(4): 242-248, (2013).
  • 9. Miller, D.A. and Lagoudas, D.C. ”Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi”, Materials Science and Engineering A, 308: 161-175, (2001).
  • 10. Saedi, S., Turabi, A.S., Andani S.M.T., Haberland, C., Karaca, H., Elahinia M. “The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting”, Journal of Alloys and Compounds, (2016).
  • 11. Dilibal S., “The effect of long-term heat treatment on the thermomechanical behavior of NiTi shape memory alloys in defense and aerospace applications” The Journal of Defense Sciences, 15:2, 1-23, (2016).
  • 12. Gall K. and Maier H.J. “Cyclic deformation mechanisms in precipitated NiTi shape memory alloys”, Acta Materialia, 50: 4643–4657, (2002).
  • 13. Shabalovskaya S.A. “On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys” ,Bio-Medical Materials and Engineering, 6(4): 267–289, (1996).
  • 14. Gur S. and Mishra S. K., Frantziskonis G.N. “Thermo-mechanical strain rate–dependent behavior of shape memory alloys as vibration dampers and comparison to conventional dampers”, Journal of Intelligent Material Systems and Structures, (2015).
  • 15. Lana, X., Leng, J. and Du, S. “Design of a Deployable Antenna Actuated by Shape Memory Alloy Hinge”, Materials Science Forum, 546-549: 1567-1570, (2007).
  • 16. Engeberg E.D, Dilibal S., Vatani M., Choi JW and Lavery J. “Anthropomorphic finger antagonistically actuated by SMA plates”, Bioinspiration & Biomimetics, 10(5): (2015).
  • 17. Gall, K., Sehitoglu H., Chumlyakov Y., and Kireeva I. “Pseudoelastic cyclic stress strain response of over-aged single crystal Ti 50.8 % Ni”, Scripta Materialia, 40:1, 7-12, (1999).
  • 18. Corwin, W.R., Rosinski, S.T., Van Walle, E. (Eds.). ASTM STP 1329 - Small specimen test techniques, 576, (1998).