NACA 0009 Profilli Bir Kanadin Düşük Bir Reynolds Sayisinda Had Analizi

Uygun kanat tasarımı, seçimi ve kullanımı gelişen teknoloji, havacılık ve uzay sanayi ile birlikte önem kazanmaya devam etmektedir. Hava araçları (uçaklar, helikopterler vb.), İHA (İnsansız Hava Aracı), rüzgâr türbinleri vb. gibi birçok uygulamada kanatlar kullanılmaktadır. Bu çalışma, 111 mm kord uzunluğuna ve kiriş uzunluğa sahip bir NACA 0009 profilli kanadı ve Ansys 15.0 sürümünü kullanarak HAD (Hesaplamalı Akışkanlar Dinamiği) analizini kapsamaktadır. Ansys Fluent kullanılarak üç boyutlu analiz yapılmıştır. Bir geometri oluşturulmuş, bu geometri uygun şekilde özellikle kanat yakınları sık olacak şekilde sayısal ağ oluşturulmuş ve k-w türbülans modeli kullanılarak analizi tamamlanmıştır. Sayısal ağda toplamda 2.078.272 düğüm noktası ve 2.036.295 eleman oluşturulmuştur. 37.000 Reynolds Sayısı altında 0°, 5°, 10° ve 15° olmak üzere dört farklı hücum açısı için test edilmiştir. Oluşturulan sayısal ağın ortalama çarpıklık oranı 1,3 ve ortalama ortogonal kalite oranı 0,97'dir. Hız kontürleri ve akım çizgileri literatürle karşılaştırılmıştır. Kaldırma ve sürükleme katsayıları kayıt altına alınmıştır. Hücum açısı arttıkça, özellikle 15° hücum açısında firar kenarında şokların oluştuğu görülmekte ve böylece NACA 0009'un farklı açılarda aerodinamik performansı test edilmiştir. 10,03’lük L/D oranı ile 5° hücum açısı kıyaslamaları galip tamamlamıştır.

CFD Analysis of a Naca 0009 Aerofoil at a Low Reynolds Number

Proper blade design, selection and use continue to gain importance with the developing technology, aviation and space industry. Many applications use wings such as aircraft (planes, helicopters, etc.), UAV (Unmanned Aerial Vehicle), wind turbines and so on. This study covers a NACA 0009 profiled wing with a 111 mm span and chord and its CFD analysis using Ansys version 15.0. Three-dimensional analysis has been done using Ansys Fluent. A geometry was created, this geometry was meshed properly, tighter especially close to the wings, and its analysis was completed using the k-w turbulence model. In total 2,078,272 nodes and 2,036,295 elements have been formed in the mesh. Four different angles of attack have been tested which are 0°, 5°, 10° and 15° at 37,000 Reynolds number. Generated mesh has an average skewness rate of 1.3 and an average orthogonal quality rate of 0.97. Velocity contours and streamlines have been compared to the literature. Lift and drag coefficients have been monitored. As the angle of attack increases, it is seen that shocks form at the trailing edge especially at 15° angle of attack and therefore aerodynamic performance of the NACA 0009 at different angles has been tested. With a L/D ratio of 10.03, the 5° angle of attack have been prevailed in comparisons.

___

  • [1] Kaya K. and Koç E., “Yatay Eksenli̇ Rüzgâr Türbi̇nleri̇nde Kanat Profi̇l Tasarımı ve Üreti̇m Esasları,” Mühendis ve Makina, 56(670): 38–48, (2015).
  • [2] Elibüyük U. and Üçgül İ., “Rüzgar Türbinleri, Çeşitleri Ve Rüzgar Enerjisi Depolama Yöntemleri,” SDÜ Yekarum e-Dergi, 2(3), (2014).
  • [3] Temiz F. İ., “Rüzgar Enerji̇si Si̇stemleri̇nde Opti̇mi̇zasyon,” MSc Thesis, İstanbul Üniversitesi, (2010).
  • [4] Dahl K. S. and Fuglsang P., “Design of the Wind Turbine Airfoil Family RISØ-A-XX,” Forksningscenter Risoe, 1–31, (1998).
  • [5] “NASA - WWII & NACA: US Aviation Research Helped Speed Victory,” 1995. https://www.nasa.gov/centers/langley/news/factsheets/WWII.html (accessed Feb. 04, 2021).
  • [6] Durhasan T., “NACA 0015 Kanat Profilinin Etrafındaki Akışın Firar Kenarından Akış Emme ile Kontrol Edilmesi,” Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6: 153–160, doi: 10.35193/bseufbd.588280, (2018).
  • [7] Erişen A. and Bakirci M., “NACA 0012 VE NACA 4412 Kanat Kesitlerinin Yeniden Tasarlanarak Had ile Analiz Edilmesi,” Journal of Engineering and Technological Sciences, 50–82, (2014).
  • [8] “NACA Airfoils | NASA,” 2017. https://www.nasa.gov/image-feature/langley/100/naca-airfoils (accessed Jan. 19, 2021).
  • [9] Jacobs J. N., Ward K. E., and Careas R. M., “The Characteristics of 78 Related Airfoil Sections Sections From Tests In The Variable-Density Wind Tunnel,” National Advisory Commitee for Aeronautics, (1935).
  • [10] Anderson J. D., Fundamentals of Aerodynamics SI, McGraw-Hill, 1984(3), (2011).
  • [11] “Aerodynamic Lift and Drag and the Theory of Flight.” https://www.mpoweruk.com/flight_theory.htm (accessed Feb. 04, 2021).
  • [12] Von Kármán T., Aerodynamics, First McGr. London: McGraw-Hill, (1963).
  • [13] “Airfoil Tools.” http://airfoiltools.com/ (accessed Feb. 04, 2021).
  • [14] Seeni A. S. and Rajendran P., “Numerical validation of NACA 0009 airfoil in ultra-low reynolds number flows,” International Review of Aerospace Engineering, 12(2): 83–92.
  • [15] Gorgulu Y. F., Ozgur M. A., and Kose R., “Comparative Analysis of a NACA 0012 Aerofoil Performed in a Subsonic Wind Tunnel and CFD,” Balkan 2. Uluslararası Uygulamalı Bilimler Kongresi, 100–105, [Online]. Available: https://baf3934e-5e5a-45ee-a0c1-665779f1dbef.filesusr.com/ugd/7cf5ba_bc631a9cbbd749e78f5d65c7ff2798b5.pdf, (2020).
  • [16] Ansys Inc., “Introduction to Ansys Meshing.” Ansys Inc., L5-16, (2011).
  • [17] Fluent Incorporated, “Introduction to CFD Analysis” (2002).
  • [18] Wilcox D. C., “Formulation of the k-ω turbulence model revisited,” AIAA Journal, 46(11): 2823–2838, (2008).
  • [19] “Wilcox k-omega Model.” https://turbmodels.larc.nasa.gov/wilcox.html (accessed Mar. 15, 2021).
  • [20] Wilcox D. C., “Turbulence Modeling for CFD”, DCW Industries, 522, [Online]. Available: http://books.google.fr/books?id=tFNNPgAACAAJ&dq=Turbulence+Modeling+for+CFD&hl=&cd=3&source=gbs_api%0Apapers3://publication/uuid/D7C9109A-0FAD-4E5A-BB55-02C6CCA66F4C, (2006).
  • [21] Ansys, “Modeling of Turbulent Flows,” Ansys Inc., 49, [Online]. Available: http://www.southampton.ac.uk/~nwb/lectures/GoodPracticeCFD/Articles/Turbulence_Notes_Fluent-v6.3.06.pdf, (2006).
  • [22] Eleni D. C., “Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil,” Journal of Mechanical Engineering Research, 4(3), doi: 10.5897/jmer11.074, (2012).
  • [23] Soğukpınar H., “Numerical Simulation Of 4-Digit Inclined Naca 00xx Airfoils to Find Optimum Angle Of Attack For Airplane Wing,” Uludağ University Journal of The Faculty of Engineering, 22(1): 169–178, doi: 10.17482/uumfd.309470, (2017).
  • [24] Ohtake T., Nakae Y., and Motohashi T., “Nonlinearity of the Aerodynamic Characteristics of NACA0012 Aerofoil at Low Reynolds Numbers,” Journal of the Japan Society for Aeronautical and Space Sciences, 55(644): 439–445, (2007).
  • [25] Laitone E. V., “Wind tunnel tests of wings at Reynolds numbers below 70000,” Experiments in Fluids, 23: 405–409, (1997).
  • [26] Winslow J., Otsuka H., Govindarajan B., and Chopra I., “Basic understanding of airfoil characteristics at low Reynolds numbers (104–105),” Journal of Aircraft, 55(3): 1050–1061, (2018).
  • [27] Ahmed N., Yilbas B. S., and Budair M. O., “Computational study into the flow field developed around a cascade of NACA 0012 airfoils,” Computer Methods in Applied Mechanics and Engineering, 167(1–2): 17–32, (1998).
  • [28] Dilmaç E., “NACA 4415 Rüzgar Türbini Kanat Profilinde Firar Kenarı Etkisinin İncelenmesi,” MSc Thesis, Konya Teknik Üniversitesi, (2019).
  • [29] Tanürün H. E., Ata İ., Canlı M. E., and Acır A., “Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal ve Deneysel İncelenmesi,” Journal of Polytechnic, 0900(2): 371–381, (2019).
  • [30] Hassan G. E., Hassan A., and Youssef M. E., “Numerical investigation of medium range re number aerodynamics characteristics for naca0018 airfoil,” CFD Letters, 6(4): 175–187, (2014).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Afyon Menekşe mermerinin (İscehisarAfyonkarahisar) Roma döneminden günümüze önemi, karakterizasyonu, tuz kristalleşmesi ve donma-çözülme testleriyle dayanıklılığının değerlendirilmesi

Mustafa Yavuz ÇELİK, Murat SERT

Lojistik Yer Seçiminde Ulaşım Ağlarının Etkisi: Kemalpaşa Lojistik Merkezi Örneği

Kürşat YILDIZ, Büşra Nur KESKİN, Mehmet Akif YERLİKAYA

Rüzgar Türbinlerinin Yaban Hayatına Etkilerinin İncelenmesi

Emine Yağız GÜRBÜZ, Ayça ALTINTAŞ, Berk SÜRÜCÜ, Azim TUNCER

Evaluation of the Effect of Transport Networks on the Kemalpaşa Logistics Center in Logistics Site Selection

Kürşat YILDIZ, Mehmet Akif YERLİKAYA, Büşra Nur KESKİN

Comparison of Ceramic and Coated Carbide Inserts Performance in Finish Turning of Hardened AISI 420 Stainless Steel

Mohammad RAFİGHİ

Helikopter Transmisyon Bütünleme Tezgahının Dijital İnsan Modelleme Kullanılarak Ergonomik Değerlendirmesi ve Yeniden Tasarımı

Ömer KOÇ, Neslihan TOP, Cengiz ELDEM, Harun GÖKÇE, İsmail ŞAHİN

Homojen Dolgulu Sıkıştırma ile Ateşlemeli Bir Motorda N-Heptan-Tetrahidrofuran Karışımlarının Yanma, Performans Ve Emisyonlara Etkisi

Alper CALAM

Fotovoltaik Sistemlerde Maksimum Güç Noktası Takibinde Kullanılan Algoritmaların Kısmi Gölgeleme Koşulları Altında Karşılaştırılması

Zeynep GÜMÜŞ, MEHMET DEMİRTAŞ

Plastik Enjeksiyon Kalıplamada Şekil Uyumlu Soğutma Kanalları için Soğutma Sıvısı Akış Stratejilerinin Karşılaştırılması

Mustafa GOKTAS, ABDULMECİT GÜLDAŞ

Performance Enhancement of a Vapor Compression Cooling System: An Application of POE/$Al_2O_3$

Mustafa AKKAYA, TAYFUN MENLİK, Adnan SÖZEN