Mars Gezgini Prototipi Merih-2

Merih-2, Özyeğin Üniversitesi Rover Takımı tarafından University Rover Challenge 2016 ve European Rover Challenge 2016’ya katılmak ve Mars koşullarında görev yapmak için tasarlanan gezgindir. Sürüş için Merih-2’nin 6 adet özel tasarım tekeri bulunmaktadır. Yüksek çekiş için bütün tekerler elektrik motorlarıyla tahrik edilmiştir. Gezginin ilerlerken yön değiştirmesi, ön ve arka tekerlerin beraber yönlerinin değiştirilmesiyle mümkün kılınmıştır. Tekerlerden en az dördünün yere basmasını sağlayan bir Külbütör-Boji mekanizması ve bu mekanizmanın dengeleyicisi bir diferansiyel bulunmaktadır. Merih-2 ayrıca, çevredeki objelerin manipülasyonu için 4 serbestlik dereceli bir robot kola sahiptir. Bu robotik kola çok fonksiyonlu bir tutucu takılmış ve tornavida alma, şalterleri açma ve kapama gibi astronotlara yardım görevlerini yapması planlanmıştır. Bu makalede; Merih-2’nin tasarım ayrıntıları, üretilen prototipten elde edilen kazanımlar ve gezginin operasyon ve yaşanan olumsuzlukları ortadan kaldırabilecek öneriler anlatılmaktadır.  

Mars Rover Prototype Merih-2

Merih-2 is designed to serve under the Mars conditions and to join the University Rover Challenge 2016 and the European Rover Challenge 2016 by the Özyeğin University Rover Team. For locomotion, the Merih-2 has 6 specially designed wheels. All wheels are driven by electric motors for high traction. The steering of the rover is provided by changing the directions of the front and rear wheels together. A Rocker-Bogie Mechanism that allows at least four wheels to keep ground contact, and a differential that assumes the task of balancing this mechanism is used. Merih-2 also has a 4-degree-of-freedom robot arm for manipulating objects in the surroundings. This robotic arm is equipped with a multifunctional holder and is intended to assist astronauts in tasks such as tool retrieval, turning on and off of switches. This article describes the design details of Merih-2 and the gains from the prototype produce. Moreover, the article focuses on the test results that are obtained at ERC 2016 and discusses the roadmap for a better prototype.

___

  • [1] Lee G. K., “System requirements for planetary rovers” in Proceeding of Sensor Fusion and Aerospace Applications Conf., 70, (1956).
  • [2] JPL and NASA. “Mars Pathfinder-Sojourner Rover,” [Online]. Available: http://www.jpl.nasa.gov/missions/marspathfinder-sojourner-rover/
  • [3] JPL and NASA. “Mars exploration rover-spirit.” [Online]. Available: http://www.jpl.nasa.gov/missions/marsexplorationroverspiritmer
  • [4] JPL and NASA. “Mars exploration rover-opportunity.” [Online]. Available: http://www.jpl.nasa.gov/missions/details.php?id=5909
  • [5] JPL and NASA. “Curiosity Rover.” [Online]. Available: http://www.nasa.gov/mission_pages/msl/index.html
  • [6] UK Mars Society. “UK University Rover Challenge”. [Online]. Available: https://marssoc.uk/ukurc
  • [7] Mars Society. “The University Rover Challenge (URC).” [Online]. Available: http://urc.marssociety.org
  • [8] Mars Society. “European rover challenge 2016.” [Online]. Available: http://roverchallenge.eu/en/
  • [9] NASA. “Revolutionary aerospace systems concepts academic linkage, NASA.” [Online]. Available: http://rascal.nianet.org
  • [10] Mars Society and European Space Foundation.. “European Rover Challenge (ERC) Rules,” [Online]. Available: http://roverchallenge.eu/en/rules-2/
  • [11] Li S., Gao H. and Deng Z., “Mobility performance evaluation of lunar rover and optimization of rocker-bogie suspension parameters,” in 2nd International Symposium on Systems and Control in Aerospace and Astronautics, 1–6, (2008).
  • [12] Ullrich R., A. Goktogan H., and Sukkarieh S., “Design optimization of a mars rover’s rocker-bogie mechanism using genetic algorithms,” in Proceedings from 10th Australian Space Science Conference, 199–210, (2010).
  • [13] Barlas F., “Design of a Mars rover suspension mechanism,” Yüksek Lisans, İzmir Yüksek Teknoloji, (2004).
  • [14] Jordan E., “Mars science laboratory differential restraint : the devil is in the details,” in Proceedings of the 41st Aerospace Mechanisms Symposium. Pasadena, (2012).
  • [15] Çavuşoğlu M. C., Feygin D., and Tendick F., “A critical study of the mechanical and electrical properties of the phantom haptic interface and improvements for high performance control,” Presence: Teleoperators and Virtual Environments, 11: 555–568, (2002).
  • [16] MIT Electric Vehicle Team, "A guide to understanding battery specifications". [Online]. Available: http://web.mit.edu/evt/summary_battery_specifications.pdf
  • [17] Open Source Robotics Foundation. “Open source robot operating system ROS,” [Online]. Available: http://ros.org, (2017).