Kriyojenik İşlem Görmüş EN AW 5754 (AlMg3) Alüminyum Alaşımının Frezelenmesinde Yüzey Pürüzlülüğü İçin Kesme Parametrelerinin Optimizasyonu

Alüminyum alaşımları günümüzde, yüksek dayanım ve ağırlık oranı, iyi korozyon ve yorulma direnci nedeniyle, otomotiv ve havacılık sanayinde, plastik enjeksiyon kalıplarında yaygın bir şekilde kullanılmaktadır. Bu çalışmada, 80x80x30 mm ebatlarında EN AW 5754 (AlMg3)  alüminyum alaşımına kriyojenik işlem uygulanmış, kaplamalı ve kaplamasız kesici uçlarla yüzey frezeleme işlemi gerçekleştirilmiş ve yüzey frezeleme işlemi esnasında kesme parametrelerinin yüzey pürüzlülüğü üzerindeki etkileri araştırılmıştır. Deneylerde Taguchi L9 ortogonal dizini ile üç farklı kesici uç (Al2O3-TiCN-TiN kaplamalı, TiAlN kaplamalı Nano, TiB2 kaplamalı), kesme hızı (310, 450, 600 m/dak), ilerleme oranı (0.15, 0.25, 0.35 mm/diş) ve üç farklı kesme derinliği (0.5, 1, 1.5 mm) kullanılmıştır. Deneyler sonucunda elde edilen değerler, sinyal-gürültü oranı (S/N), varyans analizi (ANOVA), üç boyutlu grafikler ve regresyon metodu kullanılarak değerlendirilmiştir. Taguchi analizi sonucu minimum yüzey pürüzlülüğü için elde edilen optimum kesme şartları; Al2O3-TiCN-TiN kaplamalı kesici uç, 1 mm kesme derinliği, 600 m/dak kesme hızı ve 0.15 mm/diş ilerleme oranı olarak bulunmuştur. Bu kesme şartları için yüzey pürüzlülük değerleri hesaplamalarda 0.47 µm olarak bulunmuş, doğrulama deneylerinde 0.32 µm olarak ölçülmüştür.

Optimization of Cutting Parameters for Surface Roughness in Milling of Cryogenic Treated EN AW 5754 (AlMg3) Aluminum Alloy

Aluminum alloys are now widely used in plastic injection molds in the automotive and aerospace industries due to their high strength and weight ratio, good corrosion and fatigue resistance. In this study, EN AW 5754 (AlMg3) 5754 aluminum alloy with dimensions of 80x80x30 mm was subjected to cryogenic treatment, face milling was performed with coated and uncoated inserts, and then the effects of cutting parameters on surface roughness during face milling were examined. The experiments were conducted with Taguchi L9 orthogonal array, using three different cutting inserts (Al2O3-TiCN-TiN coated, TiAlN coated Nano, TiB2 coated), cutting speeds (310, 450, 600 m / min), feed rates (0.15, 0.25, 0.35 mm / tooth) and depths of cut (0.5, 1, 1.5 mm). The values obtained at the end of the experiments were evaluated using signal-to-noise ratio (S/N), variance analysis (ANOVA), three-dimensional graphs and regression method. Taguchi analysis has revealed that optimum cutting conditions for the minimum surface roughness are the Al2O3-TiCN-TiN coated insert, 1 mm depth of cut, 600 m/min cutting speed and 0.15 mm/tooth feed rate. The surface roughness values for these cutting conditions were found as 0.47 μm in the calculations and 0.32 μm in the verification experiments.

___

  • [1] Durmuş H., “Optimization of multi-process parameters according to the surface quality criteria in the end milling of the AA6013 aluminum alloy”, Materials and Technology, 46 (4): 383–388, (2012).
  • [2] Rawangwong S., Chatthong J., Boonchouytan W. and Burapa R., “Influence of cutting parameters in face milling semi-solid AA-7075 using carbide tool affected the surface roughness and tool wear”, Energy Procedia, 56 (1): 448–457, (2014).
  • [3] Escalona P.M. and Maropoulos P.G.,“A geometrical model for surface roughness prediction when face milling Al 7075-T7351 with square insert tools”, Journal of Manufacturing Systems, 36: 216-223, 2015.
  • [4] Kechagias J., Petropoulos G., Iakovakis V. and Maropoulos S. (2009), “An investigation of surface texture parameters during turning of are inforced polymer composite using design of experiments and analysis”, Int. J. Experimental Design and Process Optimization, 1 (2/3): 164–177, (2009).
  • [5] Danilevsky V., “Manufacturing Engineering”, No. 121, TMMOB Publishing, Ankara, (1987).
  • [6] Boothroyd G., “Fundamentals of Metal Machining and Machine Tools, 5th ed.”, McGraw- Hill, New York, (1981).
  • [7] Yang J.L and Chen J.C., “A systematic approach for identifying optimum surface roughness performance in end-milling operations”, Journal Industrial Technology, 17 (1): 1–8, (2001).
  • [8] Benardos P.G. and Vosniakos G.C., “Predicting surface roughness in machining: a review”, International Journal of Machine Tools and Manufacture, 43 (6): 833–844, (2003).
  • [9] Risbood K.A., Dixit U.S. and Sahasrabudhe A.D., “Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process”, Journal of Materials Processing Technology, 132 (1–3): 203–214, (2003).
  • [10] Khattree R. and Rao C.R., “Statistics in Industry, Handbook of Statistics V.22”, Gulf Professional Publishing, Netherlands, (2003).
  • [11] Davim J.P.,“Sustainable Manufacturing”, John Wiley and Sons, Hoboken, (2010).
  • [12] Lin Y.C., Chen Y.F., Wang D.A. and Lee H.S., “Optimization of machining parameters in magnetic force assisted EDM based on Taguchi method”, Journal of Materials Processing Technology, 209 (7): 3374–3383, (2009).
  • [13] Zhang J.Z., Chen J.C. and Kirby E.D. (2007), “Surface roughness optimization in an end-milling operation using the Taguchi design method”, Journal of Materials Processing Technology, 184 (1–3): 233–239, (2007).
  • [14] Mandal N., Doloi B., Mondal B. and Das R., “Optimization of flank wear using zirconia toughened alumina (ZTA) cutting tool: Taguchi method and regression analysis”, Measurement, 44 (10): 2149–2155, (2011).
  • [15] Asiltürk İ. and Neşeli S., “Multi response optimization of CNC turning parameters via Taguchi method-based response surface analysis”, Measurement, 45 (4): 785–794, (2012).
  • [16] Günay M. and Yücel E., “Application of Taguchi method for determining optimum surface roughness in turning of high-alloy white cast iron”, Measurement, 46 (2): 913–919, (2013).
  • [17] Kurt M., Bagci E. and Kaynak Y., “Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes”, Journal of Advanced Manufacturing Technology, 40 (5–6): 458–469, (2009).
  • [18] Babu GHV P., Murthy BSN., Rao K.V., Kumar K.A., “Taguchi based optimization of process parameters in orthogonal turn milling of ASTM B319”, Materials Today Proceedings, 4 (2, Part A): 2147-2156, (2017).
  • [19] Vardhan M. V., Sankaraiah G., Yohan M., Rao H. J.,“Optimization of parameters in CNC milling of P20 steel using Response Surface Methodology and Taguchi Method”, Materials Today Proceedings, 4 (8): 9163-9169, (2017).
  • [20] Aravind S., Shunmugesh K., Biju J., Vijayan J.K., 2017, “Optimization of micro –Drilling parameters by Taguchi Grey Relational Analysis”, Materials Today Proceedings, 4 (2, Part B): 4188-4195, (2017).
  • [21] Meyers A.R. and Slattery T.J., “Basic Machining Reference Handbook”, Industrial Press, New York, (2001).
  • [22] Vakondios D., Kyratsis P., Yaldız S. and Antoniadis A., “Influence of milling strategy on the surface roughness in ball end milling of the aluminum alloy AL7075-T6”, Measurement, 45 (6): 1480–1488, (2012).
  • [23] Kuram E. and Özçelik B., “Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill”, Measurement, 46 (6): 1849–1864, (2013).
  • [24] Dimin S. F., Anand T.J.S., Jamli R., Kamely A., “Surface quality investigation of Al 6061-T6511 using TiALN soated milling tool”, International Journal of Basic & Applied Sciences IJBAS-IJENS, 10 (4): 55-59, (2010).
  • [25] Kadirgama K., Noor M.M., Rahman M.M., Rejad M. R. M., Haron C.H.C., “Surface roughness prediction model of 6061-T6 aluminium alloy machining using statistical method”, European Journal Scientific Research, 25 (2): 250-256, (2009).
  • [26] Baharudin B.T.H.T., İbrahim M.R., İsmail N., Leman Z., Ariffin M.K.A. and Majid D.L., “Experimental investigation of HSS face milling to AL6061 using Taguchi method”, Procedia Engineering, 50: 933–941, (2012).
  • [27] Kechagias J.D., Ziogas C.K., Pappas M.K. and Ntziatzias I.E., “Parameter optimization during finish end milling of Al alloy 5083 using robust design”, Proceedings of the World Congress on Engineering (WCE 2011), London, UK, (2011).
  • [28] Pınar A.M., “Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method”, Arabian Journal Science and Engineering, 38 (3): 705–714, (2013).
  • [29] Chen P., Malone T., Bond R. and Torres P., “Effects of cryogenic treatment on the residual stress and mechanical properties of an aerospace aluminum alloy”, Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology, (2001).
  • [30] Pavan K.M., Sachin L.S., Mayur S., Chandrashekara A. and Ajaykumar B.S., “Effect of cryogenic treatment on the mechanical and microstructural properties of aluminum alloys – a brief study”, International Journal of Mechanical and Production Engineering, 2 (5): 95-99, (2014).
  • [31] Trieu H.H., Morris L.H., Kaufman M.E., Hood R. and Jenkins L.S., “Investigation of cryogenic treatment of UHMWPE”, Proceedings of the Sixteenth Southern Biomedical Engineering Conference, 90-91, (1997).
  • [32] Lulay K.E., Khan K. and Chaaya D., “The Effect of Cryogenic Treatments on 7075 Aluminum Alloy”, Journal of Materials Engineering and Performance, 11(5): 479-480, (2002).
  • [33] Joshi P., Singh J., Dhiman P., Shekhar H. and Kumar V., “Effect of cryogenic treatment on various materials: A review”, HCTL Open International Journal of Technology Innovations and Research, 14: 1-11, (2015).
  • [34] www.aalco.co.uk, “Properties of 5754 H111 Aluminum Alloy”, (2018).
  • [35] www.seykoc.com.tr, “Alüminyum 5754 H111 alaşımının özellikleri”, (2018).
  • [36] Krishnaiah K. and Shahabudeen P., “Applied Design of Experiments and Taguchi Methods”, PHI Learning Private Limited, New Delhi, (2012).
  • [37] Roy R.K., “A Primer on the Taguchi Method, Competitive Manufacturing Series”, Van Nostrand Reinhold, New York, (1990).
  • [38] Fowlkes W.Y. and Creveling C.M., “Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development”, Prentice Hall, New Jersey, (1995).
  • [39] www.kapco.com.tr, “Kesici Uç Kaplama Türleri ve Özellikleri”, (2018).
  • [40] Park D.H., Choi S.W., Kim J.H. and Lee J.M., “Cryogenic mechanical behavior of 5000- and 6000-series aluminum alloys: Issues on application to offshore plants” Cryogenics, 68: 44-58, (2015).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Hassas Tarım Uygulamaları İçin Yeni Nesil Damla Sulama Sistemi Tasarımı Ve Gerçekleştirilmesi

Mustafa BURUNKAYA

Deposition and Characterization of ZnSnSe2 Thin-Films Deposited by Using Sintered Stoichiometric Powder

Özge BAYRAKLI SÜRÜCÜ, HASAN HÜSEYİN GÜLLÜ

Kriyojenik İşlem Görmüş EN AW 5754 (AlMg3) Alüminyum Alaşımının Frezelenmesinde Yüzey Pürüzlülüğü İçin Kesme Parametrelerinin Optimizasyonu

Gürcan SAMTAŞ, Salih KORUCU

Kızılağaç (Alnus glutinosa subsp. barbata (C.A. Mey.) Yalt.) Kontrplaklarının Bazı Teknolojik Özellikleri Üzerine Dikim Aralığının Etkisi

Halime GÜDÜL, İsmail AYDIN, AYDIN DEMİR

Yapısal Sağlık İzlemede Kullanılan Piezoelektrik Sensörlerin Değişen Sıcaklıklarda Davranışının İncelenmesi

Mesut TEKKALMAZ, Gökhan HAYDARLAR, MEHMET ALPER SOFUOĞLU

Transformatörlerde Kazan Kayıplarının Azaltılmasında En Uygun Yatay Şönt Eleman Boyutu ve Konumunun Parametrik Sonlu Elemanlar Analizleri ile İncelenmesi

MEHMET AYTAÇ ÇINAR

Akıllı ve Geleneksel Giyilebilir Sağlık Cihazlarında Nesnelerin İnterneti

Hakan ÖCAL, İBRAHİM ALPER DOĞRU, NECAATTİN BARIŞÇI

Ti6Al4V Titanyum Alaşımının Delinmesinde Delme Yönteminin Aşınmaya Etkisinin İncelenmesi

İbrahim ÇİFTÇİ, Hüseyin GÖKÇE

34CrNiMo6 Çeliğinin Frezelenmesinde Kesme Parametrelerinin Titreşim Ve Yüzey Pürüzlülüğüne Etkilerinin İncelenmesi

Mehmet ERBAŞ, ABDULKADİR GÜLLÜ

Investigating Some Classification Methods To Evaluate Efficiency Results: A Case Study By Using Conjoint Analysis

EZGİ NAZMAN, Hülya OLMUŞ, Semra ERBAŞ