Kil Minerallerinden Alümina Üretimi: Güncel Değerlendirmeler

Günümüzde üstün fiziksel ve teknolojik özelliklerinden dolayı çok önemli bir malzeme olan alümina (Al2O3) endüstride yaygın bir şekilde kullanılmaktadır ve alümina üretiminin neredeyse tamamı hammadde kaynağı olarak boksitin kullanıldığı Bayer prosesi ile karşılanmaya devam etmektedir. Ancak yüksek üretim miktarlarına bağlı olarak Bayer prosesine beslenecek uygun kalitedeki boksit rezervlerinin hızla azalması, alümina üretim maliyetlerindeki artışlar, bazı ülkelerin boksit rezervlerinin sınırlı olması ya da hiç bulunmaması gibi teknik ve ekonomik gerekçelerden dolayı boksit dışı kaynaklardan alümina üretimi konusu hem bilimsel araştırma hem de endüstriyel uygulamalar açısından oldukça önem taşımaktadır. Doğada bol ve yaygın yaygın bir şekilde bulunmaları, nispeten yüksek alüminyum tenörüne sahip olmaları, madencilik yöntemleriyle üretimlerinin kolay ve ucuz olması, diğer kaynaklara göre daha basit hazırlama ve zenginleştirme işlemleri gerektirmeleri gibi nedenlerden dolayı kil mineralleri alümina üretimine en elverişli boksit dışı kaynak olarak görülmektedir. Killerden alümina üretimi amacıyla geliştirilmiş ve genel kabul görmüş bazı süreçler bulunmaktadır. Bunlar arasında özellikle “Asit Liç Süreci” daha fazla ön plana çıktığı, bazı üsünlüklerinden dolayı alümina üretiminde daha etkin bir yöntem olarak uygulanabileceği konusunda bir fikir birliği oluştuğu görülmektedir. Bununla birlikte süreç koşulları ve süreç işlem kademeleri üzerinde birtakım değişikliklere gidildiği, bazı modifikasyonların denendiği güncel çalışmalara rastlanılmaktadır. Killerden alümina üretimi konusunda yapılmış olan çalışmaların ve güncel araştırma bulgularının derlenmesiyle hazırlanan bu çalışmanın amacı, başta alümina endüstrisi ve paydaşları olmak üzere ilgili araştırmacılara bilgi vermek, bu alanda yapılan bilimsel çalışmalara katkı sunmaktır.  

Alumina Production from Clay Minerals: Current Reviews

Alumina (Al2O3), which is a very important material due to its superior physical and technological properties, is widely used in industry and almost all of alumina is obtained from Bayer process using bauxite as a raw material. However, some technical and economical handicaps of alumina production with Bayer process (such as limited or non availability of bauxite reserves in some countries, reduction of high grade bauxite deposits, growing alumina demand for industry etc.) require alternative raw material sources and methods to produce alumina. Therefore, investigations on the alumina production from non-bauxite sources is one of the current studies in related literature as well. Clay minerals are considered to be the best available source of non-bauxite raw material for alumina production. Because clay minerals are abundant and common in the earth crust, they have relatively high grade of aluminum, when compared to other sources, clay mining is easier and require simpler preparation and enrichment processes. There are various processes developed to produce alumina from clays, but among them "Acid Leaching Process" has become well-known method that could be practiced as a more effective method in alumina production due to some advantages.  Moreover, it is seen that there is a consensus on Acid Leaching Process. Besides, there are current studies investigating  several technical modifications and improvements on the process steps.The aim of this study prepared by reviewing the studies obtained from literature and current experimental results on production of alümina from clays is to give information particularly to alumina industry and stakeholders and related researchers, and to contribute to scientific studies on this topic.

___

  • [1] World Aluminium, http://www.world.aluminium.org/statistics/alumina-production. Son Erişim Tarihi: 28 Şubat 2017.
  • [2] Habashi, F., Handbook of Extractive Metallurgy, Volume 2. Heidelberg, Germany: Wiley-VCH, 1997.
  • [3] Girgin, İ., Boksit dışı kaynaklardan alümina üretimi, Madencilik Dergisi, 23(3), 7-14, 1984.
  • [4] Günay, D., Alüminyum sektörü hakkında bir değerlendirme, Türkiye Kalkınma Bankası, Ekonomik ve Sosyal Araştırmalar Müdürlüğü, 50s. Ankara, 2006.
  • [5] Orbite Aluminae Inc. http://www.nasdaq.com/symbol/eorbf/press-releases, Son Erişim Tarihi: 27 Şubat 2017.
  • [6] Cohen, J., Mercier, H., Recovery of alumina from non-bauxite aluminum-bearing raw materials, Société Aluminium Pechiney, Light Metals, Wiley-VCH, 1976.
  • [7] Özdemir, M., Çetişli, H., Extraction kinetics of alunite in sulphuric acid and hydrochloric acid, Hydrometallurgy, 76, 217-224, 2005.
  • [8] Arlyuk, B. I., So. D., Pivnev A.I., Efficiency of nepheline ore processing for alumina production all-union aluminum and magnesium, Leningrad, In: Peterson, W.S. (Ed.), Light Metals, Wiley-VCH, 1992.
  • [9] Yao, Z.T., Xia, M.S., Sarker, P.K., Chen, T., A review of the alumina recovery from coal fly ash, with a focus in China, Fuel, 120, 74-85, 2014.
  • [10] Singh, R., Singh, L., Singh, S. V., Beneficiation of iron and aluminium oxides from fly ash at lab scale, International Journal of Mineral Processing, 32–37, 145, 2015.
  • [11] Ding, J., Ma, S., Zheng, S., Zhang, Y., Xie, Z., Shen, S., Liu, Z., Study of extracting alumina from high-alumina PC fly ash by a hydro-chemical process, Hydrometallurgy, 58–64, 161, 2016.
  • [12] Shemi A., Ndlovu S., Sibanda V., van Dyk L.D., Extraction of aluminium from coal fly ash: Identification and optimization of influential factors using statistical design of experiments, International Journal of Mineral Processing, 127, 10–15, 2014.
  • [13] Habashi, F., Alumina from Silicates, The International Committee for Study of Bauxite, Alumina & Aluminium, Volume 17, June 2017.
  • [14] Flint E. P., Clarke W. F., Newman E. S., Leo Shartsis. D. L. Bishop and Lansing S. Wells, Extraction of alumina from clays and high silica bauxites, Journal of Research of The National Bureau of Standards, Volume 36, 1946.
  • [15] Bengtson, K.B., A technological comparison of six processes for the production of reduction grade alumina from non-bauxitic raw materials. In: Peterson, W.S. (Ed.), Light Metals, Wiley-VCH, pp. 217–312, 1979.
  • [16] Sawyer, D.L., Turner, T.L., Hunter, D.B., Alumina mini-plant operation-overall mass balance for clay hcl acid leaching, U.S. Bureau of Mines. Report No 8759, 29 pp, 1983.
  • [17] Al-Ajeel, A.W. A., Al-Sindy, S. I., Alumina recovery from ıraqi kaolinitic clay by hydrochloric acid route, Iraqi Bulletin of Geology and Mining, 2(1), 67-76, 2006.
  • [18] Bazin, C., El-Ouassiti K., Ouellet V., Sequential leaching for the recovery of alumina from a Canadian clay, Hydrometallurgy, 88, 196–201, 2007.
  • [19] Al-Zahrani, A.A., Abdul-Majid, M.H., Extraction of alumina from local clays by hydrochloric acid process, Journal of King Abdulaziz University: Engineering Sciences, 20(2), 29-41, 2009.
  • [20] Tang, A., Su, L., Li, C.H., Wei, W., Effect of mechanical activation on acid leaching of kaolin residue, Applied Clay Science, 48, 296-299, 2010.
  • [21] Daniels, A. L., Muzenda E., Recovery of aluminium oxide from flint clay through H2SO4 leaching, Proceedings of the World Congress on Engineering, Vol III WCE 2012, July 4 - 6, London, U.K., 2012.
  • [22] Ohale, P.E., Uzoh, C.F., Onukwuli, O.D., Optimal factor evaluation for the dissolution of alumina from Azaraegbelu clay in acid solution using RSM and ANN comparative analysis, South African Journal of Chemical Engineering, 43-54, 24, 2017.
  • [23] Devlet Planlama Teşkilatı, Sekizinci Beş Yıllık Kalkınma Planı, Seramik Killeri-Kaolen-Feldspat-Pirofillit-Wollastonit-Talk Çalışma Grubu Raporu, Ankara, 2001.
  • [24] http://webmineral.com/ Son Erişim Tarihi: 17 Ekim 2017.
  • [25] Erdemoğlu, M., Birinci M., Uysal, T., Porgalı, E., Yumuşak S., Characterization of mechanically activated pyrophyllite for Al2O3 production by acid leaching process, International Mineral Processing Symposium, İstanbul, 2016.
  • [26] Erdemoğlu, M., Birinci M., Uysal, T., Porgalı, E., Barry, T. S., Acid leaching performance of mechanically activated pyrophyllite ore for Al2O3 extraction, 9. International Conference on Mechanochemistry and Mechanical Alloying, Slovakia, 2017.
  • [27] Birinci, M., Uysal, T., Erdemoğlu M., Porgalı, E., Barry, T.S., Acidic Leaching of Thermally Activated Pyrophyllite Ore From Pütürge (Malatya-Turkey) Deposit, XVII Balkan Mineral Processing Congress, Antalya, 2017.
  • [28] Miller J., Irgens, A., Alumina Production By The Pedersen Process - History And Future, In: Peterson, W.S. (Ed.), Light Metals, Wiley-VCH, pp. 977– 982, 1979.
  • [29] Habashi, F., A Textbook of Hydrometallurgy. Métallurgie Extractive Québec, Québec City, Canada, 1993.
  • [30] Habashi, F., Textbook of Hydrometallurgy (2. Edition), Métallurgie Extractive, Québec City, Canada, 1999.
  • [31] Ajemba, R. O., Onukwuli, O. D., Process optimization of sulphuric acid leaching of alumina from Nteje clay using central composite rotatable design, International Journal of Multidisciplinary Sciences and Engineering, 3(5), 1-7, 2012.
  • [32] Numluk, P., Chaisena, A., Sulfuric acid and ammonium sulfate leaching of alumina from Lampang clay, E-Journal of Chemistry, 9(3), 1364-1372, 2012.
  • [33] Warris C.J., McCormick, P. G., Mechanochemical processing of refractory pyrite, Minerals Engineering, 10, 1119-1125, 1997.
  • [34] Baláž, P., Influence of solid state properties on ferric chloride leaching of mechanically activated galena, Hydrometallurgy, 40, 359-368, 1996.
  • [35] Tkáčová, K., Baláž, P., Mišura, B., Vigdergauz, V.E., Chanturiya, V.A., Selective leaching of zinc from mechanically activated complex Cu-Pb-Zn concentrate, Hydrometallurgy, 33, 291-300, 1993.
  • [36] Tromans, D., Meech, J.A., Enhanced dissolution of minerals: microtopography and mechanical activation, Minerals Engineering, 12, 609-625, 1999.
  • [37] Welham, N.J., Enhanced dissolution of tantalite/columbite following milling, International Journal of Mineral Processing, 61, 145-154, 2001.
  • [38] Pourghahramani, P., Forssberg, E., Effects of mechanical activation on the reduction behavior of hematite concentrate, International Journal of Mineral Processing, 82, 96-105, 2007.
  • [39] Şener, M., Jipsin (CaSO4.2H2O) ısıl davranışına mekanik aktivasyonun etkisi, Yüksek Lisans Tezi, İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya, 2012.
  • [40] Uysal T., Mutlu H.S., Erdemoğlu M., Effects of mechanical activation of colemanite (Ca2B6O11.5H2O) on its thermal transformations, International Journal of Mineral Processing, 151, 51-58, 2016.
  • [41] Erdemoğlu, M., Carbothermic reduction of mechanically activated celestite, International Journal of Mineral Processing, 92, 144-152, 2009.
  • [42] Wang, Y., Forssberg, E., Enhancement of energy efficiency for mechanical production of fine and ultra-fine particles in comminution, China Particuology, 5, 193-201, 2007.
  • [43] Pérez-Rodríguez, J. L., Madrid Sánchez Del Villar, L. M., Sánchez-Soto, P.J., Effects of dry grinding on pyrophyllite, Clay Minerals, 23, 399-410, 1988.
  • [44] Uysal, T., Şener, M., Toptaş, H., Karamazı, Ş. S., Yazıcı, S., Eroğlu, Y., Erdemoğlu, M., Mechanically induced changes on crystal structure and thermal behaviour of industrial minerals: case studies for colemanite, pyrophyllite and quartz, The Journal of Ore Dressing, 17, 8-14, 2015.
  • [45] Uysal T., Birinci, M., Porgalı E., Erdemoğlu, M., Effects of intensive milling on the structural characteristics of pyrophyllite ore, 18. Uluslararası Metalurji ve Malzeme Kongresi, İstanbul, 2016.
  • [46] Temuujin, J., Okada, K., Jadambaa, T.S., MacKenzie, K.J.D., Amarsanaa, J., Effect of grinding on the leaching behaviour of pyrophyllite, Journal of European Ceramic Society, 23(8), 1277-1282, 2003.
  • [47] Dewey, J.L., Scott, C.E., Kane, J.F., Stratton, C.L., Rushing, J.C., Spoonts, R.H., Alumina production by nitric acid extraction of clay, United States Patent No: 4.246.239, 1981.
  • [48] Redlich, O., Jiarch, C.C., Adams, J.F., Sharp, F.H., Holt, E.C., Taylor, J.E., Extraction of alumina from clay, Industrial and Engineering Chemistry, 38(11), 1181-1187, 1946.
  • [49] Biswas, R.K., Begum, D.A., Solvent extraction of Fe3+ from chloride solution by D2EHPA in kerosene, Hydrometallurgy, 50, 153-168, 1998.
  • [50]. Mishra, R.K., Rout, P.C., Sarangi, K., Nathsarma, K.C., Solvent extraction of Fe (III) from the chloride leach liquor of low grade iron ore tailings using Aliquat 336, Hydrometallurgy, 108, 93-99, 2011.
  • [51] Reh L., Plass, L., Marchessaux, P., Process fort he thermal decomposition of aluminum chloride hexahydrate to obtain alümina, United States Patent No: 4.107.281, 1978.
  • [52] Eisele, J.A., Bauer, D.J., Shanks, D.E., Bench-Scale studies to recover alumina from clay by a hydrochloric acid process, Industrial Engineering Chemistry Product Research and Development, 22, 105-110, 1983.
  • [53] Hartman, M., Trnka, Šolcová, O., Thermal decomposition of aluminum chloride hexahydrate, Industrial & Engineering Chemistry Research, 44(17), 6591-6598, 2005.
  • [54] Çılgı, G. K. Çetişli H., Thermal decomposition kinetics of aluminum sulfate hydrate, Journal of Thermal Analysis and Calorimetry, 98(3):855-861, 2009.
  • [55] McSweene, Gerald B., Thermal decomposition of aluminum chloride hexahydrate, Patent No: CA1172427, 1984.
  • [56] E. EI-Shereafy, M. M. Abousekkina, A. Mashaly, M. EI-Ashry, Mechanism of thermal decomposition and γ-pyrolysis of aluminum nitrate nonahydrate (AI(NO3)3.9H2O), Radioanalytical and Nuclear Chemistry, Vol. 237, No 12, 183-186, 1998.
  • [57] Park, K. Y., Jeong, J., Manufacture of low-soda alumina from clay, Industrial & Engineering Chemistry Research, 35(11), 4379-4385, 1996.