In2O3 ince filmlerin yapısal, morfolojik, optik ve elektriksel özelliklerinin incelenmesi: gaz sensörü uygulamaları

Bu çalışmada, RF magnetron püskürtme yöntemi ile 50W ve 100W güç değerlerinde, iki adet In2O3 ince film üretildi. Üretilen ince filmlerin yapısal, morfolojik ve optik özellikleri belirlendi. In2O3 ince filmlerin sensör fabrikasyonları tamamlanarak, In2O3 gaz sensörleri elde edildi. Gaz sensörleri; bütan gazı konsantrasyonu, uygulama voltajı ve sensör çalışma sıcaklığı değiştirilerek test edildi. Test sonuçları incelendiğinde, üretilen her iki sensörün de farklı sensör çalışma sıcaklığı ve gaz konsantrasyonları için kullanıma uygun olduğu görüldü.

Investigation of the structural, morphological, optical and electrical properties of In2O3 thin films: gas sensor applications

In this study, two In2O3 thin films were prepared at 50W and 100W target power by using RF magnetron sputtering technique. The structural, morphological and optical properties of the produced thin films were investigated. The In2O3 gas sensors were produced by completing the fabrications of In2O3 thin films. The gas sensors were tested with changing butane gas concentration, application voltage and sensor operating temperature. When the test results were examined, it was seen that both of the produced sensors were found to be suitable for using with different sensor operating temperatures and gas concentrations.

___

  • [1] T. Asar, B. Korkmaz, S. Özçelik, “Effect of platinum doping on the structural and electrical properties of SnO2 thin films”, J. Exp. Nanosci., 11: 1285–1306, (2016).
  • [2] B. Kinaci, T. Asar, S.Ş. Çetin, Y. Özen, K. Kizilkaya, “Electrical characterization of Au/ZnO/TiO2/n-Si and (Ni/Au)/ZnO/TiO2/n-Si Schottky diodes by using current-voltage measurements”, J. Optoelectron. Adv. Mater., 14: 959–963, (2012).
  • [3] B. Coskun, T. Asar, U. Akgul, K. Yildiz, Y. Atici, “Investigation of structural and electrical properties of Zirconium dioxide thin films deposited by reactive RF sputtering technique”, Ferroelectrics, 502: 147–158, (2016).
  • [4] D. Liu, W. Lei, S. Qin, L. Hou, Z. Liu, Q. Cui, et al., “Large-scale synthesis of hexagonal corundum-type In2O3 by ball milling with enhanced lithium storage capabilities”, J. Mater. Chem. A, 1: 5274–5278, (2013).
  • [5] M.A. Islam, M. Nuruzzaman, R.C. Roy, J. Hossain, K.A. Khan, “Investigation of Electrical and Optical Transport Properties of N-type Indium Oxide Thin Film”, Am. J. Eng. Res., 4: 62–67, (2015).
  • [6] H.I. Yeom, J.B. Ko, G. Mun, S.H.K. Park, “High mobility polycrystalline indium oxide thin-film transistors by means of plasma-enhanced atomic layer deposition”, J. Mater. Chem. C., 4: 6873–6880, (2016).
  • [7] A.H.M.Z. Alam, P.K. Saha, T. Hata, K. Sasaki, “High-rate reactive deposition of indium oxide films on unheated substrate using ozone gas”, Thin Solid Films., 352: 133–137, (1999).
  • [8] C.E. Wickersham, J.E. Greene, “The effect of substrate bias on the electrical and optical properties of In2O3 films grown by RF sputtering”, Phys. Status Solidi., 47: 329–337, (1978).
  • [9] S. Naseem, M. Iqbal, K. Hussain, “Optoelectrical and structural properties of evaporated indium oxide thin films”, Sol. Energy Mater. Sol. Cells., 31: 155–162, (1993).
  • [10] K.G. Gopchandran, B. Joseph, J.T. Abraham, P. Koshy, V.K. Vaidyan, “The preparation of transparent electrically conducting indium oxide films by reactive vacuum evaporation”, Vacuum, 48: 547–550, (1997).
  • [11] T. Asikainen, M. Ritala, W.-M. Li, R. Lappalainen, M. Leskelä, “Modifying ALE grown In2O3 films by benzoyl fluoride pulses”, Appl. Surf. Sci., 112: 231–235, (1997).
  • [12] W.-Y. Chung, G. Sakai, K. Shimanoe, N. Miura, D.-D. Lee, N. Yamazoe, “Preparation of indium oxide thin film by spin-coating method and its gas-sensing properties”, Sensors Actuators B Chem., 46: 139–145, (1998).
  • [13] A. Gurlo, M. Ivanovskaya, A. Pfau, U. Weimar, W. Göpel, “Sol-gel prepared In2O3 thin films”, Thin Solid Films, 307: 288–293, (1997).
  • [14] C.G. Granqvist, “Transparent conductive electrodes for electrochromic devices: A review”, Appl. Phys. A Solids Surfaces, 57: 19–24, (1993).
  • [15] C.C. Wu, C.I. Wu, J.C. Sturm, a. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices”, Appl. Phys. Lett., 70: 1348, (1997).
  • [16] T. Takada, K. Suzuki, M. Nakane, “Highly sensitive ozone sensor”, Sensors Actuators B. Chem., 13: 404–407, (1993).
  • [17] K.K. Makhija, A. Ray, R.M. Patel, U.B. Trivedi, H.N. Kapse, “Indium oxide thin film based ammonia gas and ethanol vapour sensor”, Bull. Mater. Sci., 28: 9–17, (2005).
  • [18] C. Suryanarayana, M.G. Norton, “X-ray Diffraction: A Practical Approach.”, (1998).
  • [19] D. Selvakumar, N. Dharmaraj, N.S. Kumar, V.C. Padaki, “Oxygen Sensing Properties of Platinum Doped Indium Oxide Nanoparticles Prepared by Hydrothermal Method”, Synth. React. Inorganic, Met. Nano-Metal Chem., 45: 753–758, (2015).
  • [20] F.Z. Henari, A.A. Dakhel, “Investigation of nonlinear optical properties of gold nanograins embedded in indium oxide films by reflection Z-scan using continuous laser”, J. Appl. Phys.,108: 123109, (2010).
  • [21] Z. Li, P. Zhang, T. Shao, J. Wang, L. Jin, X. Li, “Different nanostructured In2O3 for photocatalytic decomposition of perfluorooctanoic acid (PFOA)”, J. Hazard. Mater., 260: 40–46, (2013).
  • [22] M. Suchea, N. Katsarakis, S. Christoulakis, S. Nikolopoulou, G. Kiriakidis, “Low temperature indium oxide gas sensors”, Sensors Actuators B., 118: 135–141, (2006).
  • [23] M. Mazouchi, S. Poduri, M. Dutta, “Growth and Characterization of Indium Oxide, Zinc Oxide and Cadmium Sulfide Nanowires by Vapor-Liquid-Solid Growth Technique”, Appl. Phys. Res., 6: 55–63, (2014).
  • [24] N.G. Pramod, S.N. Pandey, P.P. Sahay, “Sn-doped In2O3 nanocrystalline thin films deposited by spray pyrolysis: Microstructural, optical, electrical, and formaldehyde-sensing characteristics”, J. Therm. Spray Technol., 22: 1035–1043, (2013).