Hava Fazlalık Katsayısı ve Oktan Sayısı Değişiminin HCCI Yanma Karakteristiklerine ve Motor Performansına Etkileri

Homojen dolgulu sıkıştırma ile ateşlemeli (HCCI) motorlar yüksek termik verimleri ve düşük egzoz emisyonları nedeniyle mevcut içten yanmalı motorlara alternatif bir yanma modelidir. Bu çalışmada, port tipi enjeksiyonlu, tek silindirli bir HCCI motorda hava fazlalık katsayısının ve oktan sayısının HCCI yanması üzerine etkileri deneysel olarak incelenmiştir. Deneyler tam yük şartlarında, 60 oC emme havası giriş sıcaklığında ve 800 min-1 motor hızında yapılmıştır. Ayrıca deneyler farklı hava fazlalık katsayılarında yapılmıştır. Oktan sayısının artırılması ile maksimum silindir içi basıncın oluşum noktası daha geç krank açılarında gerçekleşmiştir. Oktan sayısının artırılması yanma süresinin uzamasına neden olmuştur. Hava/ yakıt oranının artması basınç artış oranını azaltmıştır. Hava/yakıt oranının azaltılması silindir içerisine sürülen enerji miktarını artırmıştır. Böylece en yüksek silindir içi basınçlar bu şartlar altında elde edilmiştir. En yüksek indike termik verim RON60 yakıtı kullanımında, hava yakıt oranının 2,14 olduğu şartlarda % 40,6 olarak tespit edilmiştir. Hava yakıt oranının azaltılması yanmanın erken gerçekleşmesini sağlamıştır. Bu nedenle net iş azalmıştır. Böylece indike termik verim de azalmıştır.

The Effects of Air Fuel Ratio and Octane Number on HCCI Combustion and Engine Performance Characteristics

Homogeneous compression ignition (HCCI) engines are an alternative combustion model to existing internal combustion engines due to their high thermal efficiency and low exhaust emissions. In this study, the effects of air fuel ratio and octane number on combustion and engine performance characteristics were investigated with port type injection single cylinder HCCI engine. Experiments were carried out at full load conditions, intake temperature of 60 oC and 800 rpm engine speed. Also, experiments were carried out with different air excess coefficients. The maximum in-cylinder pressure occured at a later crank angle by increasing the number of octane. Increasing the octane number has caused the increase of the combustion duration. The increase of air fuel ratio decreases the pressure rise rate. Decreases of air fuel ratio has increased the amount of injected energy to the cylinder. So that, the highest in-cylinder pressures are obtained under these conditions. The highest indictical thermal efficiency 40.6 %, provided that the air fuel ratio was 2.14 with using RON60 fuel. Decreases of air fuel ratio caused the combustion advance. For this reason net work decreased. Thereby, indicated thermal efficiency decreased.

___

  • [1] Mohanamurugan S., Sendilvelan S. "Emission and combustion characteristics of different fuel In A HCCI engine", International Journal of Automotive and Mechanical Engineering, 3:279–292, (2011).
  • [2] Hairuddin A., Wandel A., Yusaf T. "An introduction to a homogeneous charge compression ignition engine", The Journal of Mechanical Engineering Science, 7:1042–1052, (2014).
  • [3] Hasan M.M., Rahman M.M., Kadirgama K.. "A review on homogeneous charge compression ignition engine performance using biodiesel-diesel blend as a fuel", International Journal of Automotive and Mechanical Engineering, 11:2199–2211, (2015).
  • [4] Machrafi H., Cavadiasa S. "An experimental and numerical analysis of the influence of the inlet temperature, equivalence ratio and compression ratio on the HCCI auto-ignition process of Primary Reference Fuels in an engine" Fuel Processing Technology, 89: 1218-1226, (2008).
  • [5] Polovina D., McKenna D., Wheeler J., Sterniak J., Miersch-Wiemers O., Mond A. "Steady-state combustion development of a downsized multi-cylinder engine with range extended HCCI/SACI capability", SAE Technical Paper, 2013-01-1655, (2013).
  • [6] Najafabadi M.I., Abdul A.N. "Homogeneous charge compression ignition combustion: challenges and proposed solutions", Journal of Combustion, Article ID783789, 14pages, (2013)
  • [7] Yao M., Zheng Z., Liu H. "Progress and recent trends in homogeneous charge compression ignition (HCCI) engines", Progress in Energy and Combustion Science, 35: 398–437, (2009).
  • [8] Saxena S., Bedoya I.D. "Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits", Progress in Energy and Combustion Science, 39: 457–488, (2013).
  • [9] Zheng J., Yang W., Miller D.L., Cernansky N.P. "A skeletal chemical kinetic model for the HCCI combustion process", SAE Technical Paper,2002-01-0423, (2002).
  • [10] Christensen M., Johansson B. "Influence of mixture quality on homogenous charge compression ignition", SAE Technical Paper, 2000-01-2454, (2000).
  • [11] Yang J., Kenney T. "Some concept of DISI engine for high fuel efficiency and low emissions", SAE Technical Paper, 2002-01-2747, (2002).
  • [12] Yang J., Culp T., Kenney T. "Development of a gasoline engine system using HCCI technology-the concept and the test results", SAE Technical Paper, 2002-01-2832, (2002).
  • [13] Maurya R.K., Agarwal A.K. "Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogenous charge compression ignition (HCCI) combustion engine", Applied Energy, 88: 1169-1180 (2011).
  • [14] Lu X., Hou Y., Zu L., Huang Z. "Experimental study on the auto ignition and combustion characteristics in the homogeneous charge compression ignition (HCCI) combustion operation with ethanol/n-heptane blend fuel by port injection", Fuel, 85: 2622-2631, (2006).
  • [15] Uyumaz A., Solmaz H., Yılmaz E., Yamık H., Polat S. "Experimental examination of the effects of military aviation fuel JP-8 and biodiesel fuel blends on the engine performance, exhaust emissions and combustion in a direct injection engine", Fuel Processing Technology, 128: 158–165, (2014).
  • [16] Dec J.E. "Advanced compression–ignition engines-understanding the incylinder processes", Proceedings of the Combustion Institute, 32: 2727–2742, (2009).
  • [17] Imtenan S., Varman M., Masjuki H.H., Kalam M.A., Sajjad H., Arbab M.I. "Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: a review", Energy Conversion and Management, 80: 329–356, (2014).
  • [18] Cinar C., Uyumaz A., Solmaz H., Sahin F., Polat S., Yilmaz E. "Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels", Fuel Processing Technology, 130: 275–281, (2015).
  • [19] Curran H.J., Gaffuri P., Pitz J.W., Westbrook C.K. "A comprehensive modeling study of n-heptane oxidation", Combustion and Flame, 114: 149–177, (1998).
  • [20] Saisirirat P., Togbe C., Chanchaona S., Foucher F., Mounaim-Rousselle C., Dagaut P. "Auto-ignition and combustion characteristics in HCCI and JSR using 1-butanol/ n-heptane and ethanol/n-heptane blends", Proceedings of the Combustion Institute, 33: 3007–3014, (2011).
  • [21] Yao M., Zheng Z., Zhang B., Chen Z. "The effect of PRF fuel octane number on HCCI opeation", SAE Technical Paper, 2004-01-2292, (2004).
  • [22] He B.Q., Liu M.B., Yuan J., Zhao H. "Combustion and emission characteristics of a HCCI engine fuelled with n-butanol-gasoline blends", Fuel, 108: 668-674 (2013).
  • [23] Hyvonen J., Haraldsson G., Johansson B. "Operating conditions using spark assisted CCI combustion during combustion mode transfer to SI in a multicylinder VCR-HCCI engine", SAE Technical Paper, 2005-01-0109, (2005).
  • [24] Wagner R., Edwards K., Daw C., Green J., Bunting B. "On the nature of cyclic dispersion in spark assisted HCCI combustion", SAE Technical Paper, 2006-01-0418, (2006)
  • [25] Wang Z., Wang J.X., Shuai S.J., Ma Q.J. "Effects of spark ignition and stratified charge on gasoline HCCI combustion with direct injection", SAE Technical Paper, 2005-01-0137, (2005)
  • [26] Zhao H. "CCI and CAI Engines For The Automotive Industry", England: Woodhead Publishing Limited, (2007).
  • [27] Sudheesh K., Mallikarjuna J.M. "Diethyl ether as an ignition improver for biogas homogeneous charge compression ignition (HCCI) operation-An experimental investigation", Energy, 35(9): 3614-3622, (2010).
  • [28] Ma J., Lü X., Ji L., Huang Z. "An experimental study of HCCI-DI combustion and emissions in a diesel engine with dual fuel", International Journal of Thermal Sciences, 47(9): 1235-1242, (2008).
  • [29] Polat S. "An experimental study on combustion, engine performance and exhaust emissions in a HCCI engine fuelled with diethyl ether–ethanol fuel blends." Fuel Processing Technology, 143: 140-150, (2016).
  • [30] Wallner T., Miers S.A., McConnell S. "A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition engine", Journal of Engineering for Gas Turbines and Power, 131(3): 032802, (2009).
  • [31] Christensen M., Hultqvist A., Johansson B. "Demonstrating the multi fuel capability of a homogeneous charge compression ignition engine with variable compression atio", SAE Technical Paper, 1999-01-3679, (1999).
  • [32] Kim M.Y., Lee C.S. "Effect of a narrow fuel spray angle and a dual injection configuration on the improvement of exhaust emissions in a HCCI diesel engine", Fuel, 86(17-18): 2871-2880, (2007).
  • [33] Guo H., Neill W.S., Chippior W., Li H., Taylor J.D. "An experimental and modeling study of HCCI combustion using n-heptane", Journal of Engineering for Gas Turbines and Power, 132(2): 022801, (2010).
  • [34] Iida M., Hayashi M., Foster D.E., Martin J.K. "Characteristics of homogeneous charge compression ignition (HCCI) engine operation for variations in compression ratio, speed, and intake temperature while using n-butane as a fuel", Journal of engineering for gas turbines and power, 125(2): 472-478, (2003).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Yapısal Sağlık İzlemede Kullanılan Piezoelektrik Sensörlerin Değişen Sıcaklıklarda Davranışının İncelenmesi

Mesut TEKKALMAZ, Gökhan HAYDARLAR, MEHMET ALPER SOFUOĞLU

A Fuzzy MCDM Approach to Determine the Most Influential Logistic Factors

Mehmet Burak ŞENOL, Aylin ADEM, Metin DAĞDEVİREN

AA7075-T6 ve AZ31B Alaşımlarının Sürtünme Karıştırma Kaynağı Üzerinde Ön Isıtma ve Kuru Buz Soğutmasının Etkisi

Musa BİLGİN, Şener KARABULUT, AHMET ÖZDEMİR

Nano Mineralojik Akışkanların Termofiziksel Özelliklerinin Deneysel Olarak İncelenmesi

Uğur KARAKAYA, Metin GÜRÜ, Adnan SÖZEN, Duygu Y. AYDIN, İbrahim Ethem BİLİCİ

İşletmeler için Personel Yemek Talep Miktarının Yapay Sinir Ağları Kullanılarak Tahmin Edilmesi

M. Hanefi CALP

Transformatörlerde Kazan Kayıplarının Azaltılmasında En Uygun Yatay Şönt Eleman Boyutu ve Konumunun Parametrik Sonlu Elemanlar Analizleri ile İncelenmesi

MEHMET AYTAÇ ÇINAR

Nokta Direnç Kaynağı ile Birleştirilen Titanyum Levhaların Çekme-Makaslama Dayanımlarının Taguchi Metoduyla Optimizasyonu

Mehmet Serkan YILDIRIM, Yakup KAYA, Ramazan ÇAKIROĞLU, Behçet GÜLENÇ, Nizamettin KAHRAMAN, Ahmet DURGUTLU

Hava Fazlalık Katsayısı ve Oktan Sayısı Değişiminin HCCI Yanma Karakteristiklerine ve Motor Performansına Etkileri

Alper CALAM, Yakup İÇİNGÜR

Investigating Some Classification Methods To Evaluate Efficiency Results: A Case Study By Using Conjoint Analysis

EZGİ NAZMAN, Hülya OLMUŞ, Semra ERBAŞ

Hassas Tarım Uygulamaları İçin Yeni Nesil Damla Sulama Sistemi Tasarımı Ve Gerçekleştirilmesi

Mustafa BURUNKAYA