Güneş Kolektörlerinde Nanoakışkanların Kullanılmasının Etkileri

Yenilenebilir enerji kaynaklarından olan güneş enerjisinden faydalanmanın önemi son yıllarda daha fazla anlaşılmaya başlanmıştır. Fosil yakıtların olumsuz çevre etkileri ve miktarlarının sınırlı olması dünya genelinde yenilenebilir enerji kaynaklarına olan talebin artmasına yol açmış ve tüm enerji kaynaklarının temeli olan güneş enerjisinden yararlanmak için çeşitli modellerin ve cihazların üretilmesi hız kazanmıştır. Güneş enerjisinden yararlanmanın en önemli yolu güneş kolektörlerinin kullanılmasıdır. Güneş kolektörleri genel olarak düzlem yüzeyli (DYGK), vakum tüplü (VTGK), parabolik (PGK) ve ısı borulu (IBGK) olmak üzere 4 tipe ayrılmakla birlikte bu tipler de kendi aralarında birçok farklı özelliğe sahip ayrı türlere ayrılabilmektedir. Dünya üzerinde en fazla kullanılan güneş kolektörü tipi Düzlem Yüzeyli Güneş Kolektörü’dür. Bunun en önemli nedenleri arasında ucuz olması, kolayca üretilebilmesi ve çeşitli şekillerde uygulanabilmesi gibi parametreler yer almaktadır. Bununla birlikte düşük ortam sıcaklığı ile ideal olmayan iklim koşullarında DYGK'ların termal verimliliği %40'ın altına düşer. DYGK’ların bu tür dezavantajlarının bulunması Vakum Tüp Güneş Kolektörlerinin üretilmesine yol açmıştır. İlerleyen teknolojiyle birlikte güneş kolektörlerinde ısı borularının kullanılması durumu gündeme gelmiş ve yapılan çalışmalar sonucunda ısı borusu kullanımının verimi iyileştirdiği tespit edilmiştir. Ayrıca güneş kolektörlerinde ve ısı borularında nanoakışkan kullanılması durumu da oldukça yaygınlaşmış olup son dönemlerde özellikle bu konu ile ilgili birçok çalışma yürütülmüştür. Temel amaç her zaman için sistemin performansını iyileştirmek ve verimlilik elde etmektir. Bu sayede güneş enerjisinden en etkili şekilde yararlanılacak ve dünya enerji arzı talebi de yenilenebilir kaynaklar kullanılarak karşılanacaktır.

Effects of Using Nanofluids in Solar Collectors

The importance of using solar energy, one of the renewable energy sources, has started to be understood more recently. The negative environmental effects and limited amounts of fossil fuels have led to increased demand for renewable energy sources worldwide and the production of various models and devices has accelerated to take advantage of solar energy, which is the basis of all energy sources. Using solar collectors as a way to benefit from solar energy has been used for many years. Although solar collectors are generally divided into 4 types as flat plate (FPSC), evacuated tube (ETSC), parabolic (PSC) and heat pipe (HPSC), these types can also be divided into separate types with many different features. The most commonly used solar collector type in the world is Flat Plate Solar Collector. The most important reasons for this are being cheap, easily produced and applied in various ways. Yet, the thermal productivity of FPSCs decreases below 40% in non-ideal climate conditions with low surrounding temperature. The existence of such disadvantages of FPSCs led to the production of Evacuated Tube Solar Collectors. With the advancing technology, the utilization of heat pipes in collectors has come to the agenda and as a result of the studies conducted, it has been determined that the use of heat pipe improves efficiency. In addition, the use of nanofluids in solar collectors and heat pipes has become quite common, and many studies have been carried out especially on this subject recently. The primary objective is always to improve the performance of the system and achieve efficiency. In this way, solar energy will be used in the most effective way and world energy supply demand will be met by using renewable resources.

___

[1] Owusu P.A., Asumadu-Sarkodie S., “A review of renewable energy sources, sustainability issues and climate change mitigation”, Cogent Engineering, 3:1, 1167990, DOI: 10.1080/23311916.2016.1167990, (2016).

[2] Lee N. A., Gilligan G. E., Rochford J., “Solar Energy Conversion”, Green Chem. An Incl. Approach, 60 : 3, 981-918, (2018).

[3] Faizal M., Saidur R., Mekhilef S., Alim M., “Energy, economic and environmental analysis of metal oxides nanofluid for flat plate solar collector”, Clean Technologies and Environm. Policy, 17 :6, 1457-1473, (2013).

[4] Allouhi A., Kousksou T., Jamil A., Bruel P., Mourad Y., Zeraouli Y., “Solar driven cooling systems: An updated review”, Renewable and Sustainable Energy Reviews, Elsevier, 44 (C), 159-181, (2015).

[5] Islam Md. T., Huda N., Abdullah A. B., Saidur R., “A comprehensive review of state-of- the art concentrating solar power (CSP) technologies”, Renewable and Sustainable Energy Reviews, 91 (C), Elsevier, 987-1018, (2018).

[6] Thirugnanasambandam M, Iniyan S, Goic R. “A review of solar thermal technologies”, Renew. Sustain. Energy Rev., 14:312–22, (2010).

[7] Bejan A., Kraus, A. D., "Heat Transfer Handbook", John Wiley&Sons Inc., (2013).

[8] Hussein A. K., Li D., Kolsi L., Kata S., Sahoo B., "A Review of Nano Fluid Role to Improve the Performance of the Heat Pipe Solar Collectors", Energy Procedia, 109: 417-424, (2017).

[9] Choi S., "Enhancing thermal conductivity of fluids with nanoparticles-Developments and Applications of Non-Newtonian Flows", ASME, FED, 231/MD-66, 99-105, (1995).

[10] Li Y., Zhou J., ang S., Schneider E., Xi S., "A review on development of nanofluid preparation and characterization", Powder Technology, 196: 89-101, (2009).

[11] Kumar V. S.,Kumar T.A.,Singh C. D., "Experimental evaluation of flat plate solar colector using nanofluids", Energy Conversion and Management, 103-115, (2017).

[12] Selimli, S., Recebli, Z. Impact of electrical and magnetic field on cooling process of liquid metal duct magnetohydrodynamic flow. Thermal Science, 22, 263-271, (2018).

[13] Saidur R., Leong K. Y., Mohammad H. A., "A review on applications and challenges of nanofluids", Renewable and Sustainable Energy Reviews, 15: 1646:1668, (2011).

[14] Khairul M. A.,Shah K., Doroodchi E., Alizian R., Moghtaderi B., "Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids", International Journal of Heat and Mass Transfer, 98: 778-787, (2016).

[15] S. Selimli, Z. Recebli, E. Arcaklioglu, “Combined effects of magnetic and electrical field on the hydrodynamic and thermophysical parameters of magnetoviscous fluid flow” Int J Heat Mass Tran, 86 , 426-432, (2015).

[16] Chougule S.S., Nirgude V.V., Gharge P.D., Modak M.,Sahu S. K., “Heat Transfer Enhancements of Low Volume Concentration CNT/Water Nanofluid and Wire Coil Inserts in a Circular Tube” Energy Procedia, Volume 90, December 2016, 552-558, (2016).

[17] Recebli, Z., Selimli, S., and Ozkaymak, M. , “Theoretical Analyses of Immiscible MHD Pipe Flow,” International Journal of Hydrogen Energy, 40 (44), 15365–15373, (2015).

[18] Wahab A., Hassan A., Muhammad A. Q., Ali H. M., Babar H., Sajid M. U., “Solar energy systems-Potential of nanofluids”, Journal of Molecular Liquids, 289:111049, (2019).

[19] Rassamakin B., Khairnasov S., Zaripov V., Rassamakin A., Alforova O., “Aluminium heat pipes applied in solar collectors”, Solar Energy, 94: 145-154, (2013).

[20] Fathabadi H., “Novel low-cost parabolic trough solar collector with TPCT heat pipe and solar tracker: Performance and comparing with commercial flat-plate and evacuated tube solar collectors”, Solar Energy, 195: 210-222, (2020).

[21] Window B., Hardin G.L., “Progress in the materials science of all glass evacuated collectors”, Solar Energy, 32: 609-623, (1984).

[22] Brunold S., Frey U., “A comparison of 3 different collectors for process heat applications”, Solar energie Pruf and Forschungsstelle Ingenieurschule, ITR, 15 p., (2007).

[23] Ercoşkun G. T., Keskin A., Gürü M., Altıparmak D., " Investigation of Design, Production and Performance of Double Trough Parabolic Trough Type Solar Collector", Gazi University Journal of Engineering and Architecture Faculty., Volume 28, No: 4, 855-863, (2013).

[24] Fathabadi H., “Novel solar collector: Evaluating the impact of nanoparticles added to the collector’s working fluid, heat transfer fluid temperature and flow rate”, Renewable Energy, 148: 1165-1173, (2020).

[25] Azad E., "Theoretical and experimental investigation of heat pipe solar collector", Exp. Therm. Fluid Sci., 32 : 8, 1666-1672, (2008).

[26] Bejan A., Kraus, A. D., "Heat Transfer Handbook", John Wiley&Sons Inc., (2013).

[27] Gernert N. J., "Heat Pipe Sink Tech Improves 6 Kw Cooling, Engineering and Technology Thermacore, Inc. Lancaster PA, (2009).

[28] Sukhatme S., Nayak K. “Solar energy principles of thermal collection and storage”, Tata McGraw Hill Education Private Limited; (2009).

[29] Kalkan G., “Performance of latent heat stored nano fluid solar water heater” Fırat Üniversity, Institute of science, Energy Systems Engineering Depeartment, Master’s Thesis, (2019).

[30] Balcıoğlu B., “Experimental investigation on the effect of the heat pipe performance using alumina nanofluid” Gazi Üniversity, Institute of science, Energy Systems Engineering Depeartment, Master’s Thesis, (2014).

[31] Yousefi T., Veysi F., Shojaeizadeh E., Zinadini S., “An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors”, Renewable Energy, 39:293–8, (2012).

[32] Yousefi T., Veysi F., Shojaeizadeh E., Zinadini S., “An experimental investigation on the effect of MWCNT–H2O nanofluid on the efficiency of flat-plate solar collectors”, Exp. Thermal Fluid Sci., 39:207–12, (2012).

[33] Yousefi T., Shojaeizadeh E., Veysi F., Zinadini S., “An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector”, Solar Energy, 86:771–9, (2012).

[34] Tora E., Moustafa T., “Numerical simulation of an Al2O3–H2O nanofluid as a heat transfer agent for a flat-plate solar collector”, Int J. Sci. Eng. Res., 4:762–73, (2013).

[35] Jamal-Abad M., Zamzamian A., Imani E., Mansouri M. “Experimental study of the performance of a flat-plate collector using Cu–water nanofluid”, J. Ther-mophys Heat Transf., 27:756–60, (2013).

[36] Faizal M., Saidur R., Mekhilef, S. “Potential of size reduction of flat-plate solar Collectors when applying MWCNT nanofluid”, In: Proceedings of the4th International Conferenceon Energy and Environment (ICEE2013), 1–4, (2013).

[37] Gangadevi R., Senthilraja S., Imam S. “Efficiency analysis of flat plate solar collector using Al2O3–water nanofluid”, Methods Enrich Power Energy Dev (MEPED'13), 1-4, (2013).

[38] Chaji H., Ajabshirchi Y., Esmaeilzadeh E., Heris S., Hedayatizadeh M., Kahani M., “Experimental study on thermal efficiency of flat plate solar collector using TiO2/water nanofluid”, Modern Appl Sci., 7:60–9, (2013).

[39] Tiwari A., Ghosh P., Sarka rJ. “Solar water heating using nanofluids – a comprehensive overview and environmental impact analysis”, Int. J. Emerg. Technol. Adv. Eng., 3:221–4, (2013).

[40] Faizal M., Saidur R., Mekhilef S., Alim M., “Energy, economic and environmental Analysis of metal oxides nanofluid for flat-plate solar collector”, Energy Convers. Manag., 76:162–8, (2013).

[41] Said Z., Sajid M., Alim M., Saidur R., Rahim N., “Experimental investigation of the Thermophysical properties of Al2O3-nanofluid and its effect on a flat plate solar collector”, Int. Commun. Heat Mass Transf., 48:99–107, (2013).

[42] Colangelo G., Favale E., DeRisi A., Laforgia D., “A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids”, Appl. Energy, 111:80–93, (2013).

[43] Nasrin R., Alim M. “Finite element simulation of forced convection in a flat plate solar collector: influence of nanofluid with double nanoparticles”, J. Appl. Fluid Mech., 7:543–56, (2014).

[44] Ekramian E., Etemad S., Haghshenasfard M. “Numerical investigations of heat transfer performance of nanofluids in a flat plate solar collector”, Int. J. Theor. Appl. Nanotechnol., 2:30–9, (2014).

[45] Moghadam A., Farzane-Gord M., Sajadi M., Hoseyn-Zadeh M. “Effects of CuO/Water nanofluid on the efficiency of a flat-plate solar collector”, Exp. Thermal Fluid Sci., 58:9–14, (2014).

[46] Mahian O., Kianifar A., Heris S., Wongwises S., “First and second laws analysis of a minichannel-based solar collector using boehmite aluminana nofluids: effects of nanoparticle shape and tube materials”, Int. J. Heat Mass Transf., 78:1166–76, (2014).

[47] Roy S., Asirvatham L., Kunhappan D., Cephas E., Wongwises S. “Heat transfer performance of silver/water nanofluid in a solar flat –plate collector”, J. Thermal Eng., 1:104–12, (2015)

[48] Said Z., Sabiha M., Saidur R., Hepbasli A., Rahim N., Mekhilef S., “Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant”, J. Clean Prod., 92:343–53, (2015).

[49] Shareef A. S., Abbod M. H., Kadhim S. Q., “Experimental investigation on a flat plate solar collector using Al2O3 nanofluid as a heat transfer agent”, Int. Journal of Energy and environment, 6:4, 317-330, (2015).

[50] Mahian O., Kianifar A., Sahin A. Z., Wongwises S., “Heat Transfer, Pressure Drop, and Entropy Generation in a Solar Collector Using SiO2/Water Nanofluids: Effects of Nanoparticle Size and pH”, J. Heat Transfer., 137 (6): 061011, (2015).

[51] Noghrehabadi A., Hajidavalloo E., Moravej M., "Experimental investigation of efficiency of square flat-plate solar collector using SiO2-water nanofluid", Case Studies in Thermal Engineering, 8: 378-386 (2016).

[52] Kumar V. S., Kumar T. A., Singh C. D., "Experimental evaluation of flat plate solar colector using nanofluids", Energy Conversion and Management, 103-115, (2017).

[53] Sharafeldin M. A., Grof G., " Experimental investigation of flat plate solar collector using CeO2-water nanofluid", Energy Conversion and Management, (2017).

[54] Kiliç F., Menlik T., Sözen A., "Effect of titanium dioxide/water nanofluid use on thermal performance of the falat plate solar collector", Solar Energy, 164: 101-108, (2018).

[55] Genc A. M., Ezan M. A., Turgut A., “Thermal performance of a nanofluid-based flat plate solar collector: A transient numerical study”, Applied Thermal Engineering, 130: 395-407, (2018).

[56] Sundar, S., Manoj, K., Singh, V. Punnaiah, Sousa, Antonio C.M., "Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts", Renewable Energy, 119, 820–833, (2018).

[57] Arıkan E., Abbasoğlu S., Gazi M., “Experimental Performance Analysis of Flat Plate Solar Collectors Using Different Nanofluids”, Sustainability, 10 (6): 1794, (2018).

[58] Rajput N. S., Shukla D. D., Rajput D., Sharm S. K., “Performance Analysis of Flat Plate Solar Collector using Al2O3/Distilled Water Nanofluid: An Experimental Investigation”, Materialstoday Proceedings, 10: 52-59, (2019).

[59] Mondragón R., Sánchez D., Cabello R., Llopis R., Juliá J. E. “Flat plate solar collector performance using alumina nanofluids: Experimental characterization and efficiency tests”, PLOS ONE, 14 (2), (2019).

[60] Sharma S., Tiwari S., Tiwari A. K., Nandan G., Prakash R., “Thermal Performance Enhancement of Flat-Plate Solar Collector Using CeO2–Water Nanofluid”, Advances in Solar Power Generation and Energy Harvesting, 109-118, (2020).

[61] Ahmadlouydarab M., Ebadolahzadeh M., Ali H., "Effects of utilizing nanofluid as working fluid in a lab-scale designed FPSC to improve thermal absorption and efficiency", Physica A: Statistical Mechanics and Its Applications, 540, (2020).

[62] Saidur R., Meng T., Said Z., Hasanuzzaman M., Kamyar A., “Evaluation of the effect of nanofluid-based absorbers on direct solar collector”, Int. J. Heat Mass Transf., 55:5899–907, (2012).

[63] Verma V., Kundan L., “Thermal performance evaluation of a direct absorption flat plate solar collector (DASC) using Al2O3–H2O based nanofluids”, IOSRJ Mech Civil Eng., 6:29–35, (2013).

[64] Hector A., Singh H., “Development of a nano-heat transfer fluid carrying direct absorbing receiver for concentrating solar collectors”, Int. J. Low-Carbon Technol., 1-6, (2013).

[65] Luo Z., Wang C., Wei W., Xiao G., Ni M., “Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts”, Int. J. Heat Mass Transf., 75:262–71, (2014).

[66] Parvin S., Nasrin R., Alim M., “Heat transfer and entropy generation through nanofluid filled direct absorption solar collector”, Int. J. Heat Mass Transf., 71:386–95, (2014).

[67] Karami M., Akhavan Bahabadi M., Delfani S., Ghozatloo A., “A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector”, Solar Energy Mater Solar Cells, 121:114–8, (2014).

[68] Moradi A., Sani E., Simonetti M., Francini F., Chiavazzo E., Asinari P., “Carbon- nanohorn based nanofluids for a direct absorption solar collector for civil application”, J. Nanosci. Nanotechnol., 15:3488–95, (2015).

[69] Gupta H., Agrawal G., Mathur J., “An experimental investigation of a low temperature Al2O3–H2O nanofluid based direct absorption solar collector”, Solar Energy, 118:390–6, (2015).

[70] Joseph A., Sreekumar S., Sujith Kumar C. S., Thomas S., "Optimisation of thermo-optical properties of SiO2/Ag-CuO nanofluid for direct absorption solar collectors", Journal of Molecular Liquids, 296:111986, (2019).

[71] Khullar V., Tyagi H., Phelan P., Otanicar T., Singh H., Taylor R., “Solar energy harvesting using nanofluids-based concentrating solar collector”, ASME J. Nanotechnol. Eng. Med., 3:031003, (2012).

[72] De Risi A., Milanese M., Laforgia D. “Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids”, Renewable Energy, 58:134–9, (2013).

[73] Ghasemi S., Ahangar G “Numerical analysis of performance of solar parabolic trough collector with Cu-water nanofluid”, Int. J. NanoDimens, 5:233–40, (2014).

[74] Sokhansefat T., Kasaeian A., Kowsary F. “Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid”, Renewable Sustain Energy Rev., 33:636–44, (2014).

[75] Mwesigye A., Huan Z., Meyer J., “Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid”, Applied Energy, 156:398–412, (2015).

[76] Kasaeian A., Daviran S., Azarian R., Rashidi A., “Performance evaluation and nanofluid using capability study of a solar parabolic trough collector”, Energy Convers Manag., 89:368–75, (2015).

[77] Khosravi A., Malekan M., Assad M. E. H., "Numerical analysis of magnetic field effects on the heat transfer enhancement in ferrofluids for a parabolic trough solar collector", Renewable Energy, (2018).

[78] Nasrin R., Alim M., “Performance of nanofluids on heat transfer in a wavy solar collector”, Int. J. Engineering Sci. Technol., 5:58–77, (2013).

[79] Alaeian M., Sedaghat A., Bahabadi M., “Heat transfer enhancement of MWCNT/ HT-Oil nanofluid in U-bend wavy tubes for use in solar collectors”, J. energy Power Sources, 1:134–40, (2014).

[80] Sözen A., Menlik T., Gürü M., Irmak A. F., Kılıç F. & Aktaş M., “Utilization of Fly Ash Nanofluids in Two-phase Closed Thermosyphon for Enhancing Heat Transfer”, Experimental Heat Transfer, 29:3, 337-354, DOI: 10.1080/08916152.2014.976724 To link to, (2016).

[81] Sözen A., Menlik T., Gürü M., K., Kılıç F., Aktaş M., M. Tarık Çakıra, “A comparative investigation on the effect of fly-ash and alumina nanofluids on the thermal performance of two-phase closed thermo-syphon heat pipes", Applied Thermal Engineering, Volume 96, 5 March 2016, Pages 330-337, (2014).

[82] Lu L., Liu Z., Xiao H., “Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors Part1: indoor experiment”, Solar Energy, 85:379–87., (2011).

[83] Çaylıoğlu E., "The Use of Different Types of Heat Pipes in Solar Collectors and Investigation of Their Thermal Efficiency", Ege University Institute of Science, Master's Thesis, 93 p., (2011).

[84] Moorthy M., Chui L., Sharma K., Anuar S., “Performance evaluation of evacuated tube solar collector using water-based titaniumoxide (TiO2) nanofluid”, J. Mech Eng. Sci., 3:301–10, (2012).

[85] Chougule S., Sahu S., Pise A., “Thermal performance of two phase thermosyphon on flat plate solar collectors using nanofluid”, J. Solar Energy Eng., 136:1–5, (2013).

[86] Liu Z., Hu R., Lu L., Zhao F., Xiao H., “Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector”, Energy Convers Manag., 73:135–43, (2013).

[87] Ersöz M. A., Yıldız A., " Determination of Optimum Pipe Diameter in Evacuated Tube Solar Collectors ", Plumbing Engineering, sayı: 133, (2013).

[88] Saravanan M., Karunakaran N., “Experimental analysis of heat pipe with V-trough solar collector”, Int. J. Res. Advent. Technol., 13–7, (2014).

[89] Aruna V., Channakaiah D., Murali G., “A study on a flat plate type of solar water heater with an thermosyphon using different working fluid”, Singaporean J. Sci. Res., 6:132–5, (2014).

[90] Menlik T., Sözen A., Gürü M., Öztaş S., " Heat transfer enhancement using MgO/water nanofluid in heat pipe", Journal of the Energy Institute, 88: 247-257, (2015).

[91] Çiftçi E., Sözen A., Karaman E., "Experimental Investigation of the Effect of Using Nanofluid Containing TiO2 on Heat Pipe Performance", Politeknik Magazine, 19 (3), 367-376, (2016).

[92] Pise G. A., Salve S. S., Pise A. T., Pise A. A., "Investigation of Solar Heat Pipe Collector Using Nanofluid and Surfactant", Energy Procedia, 90: 481-491, (2016).

[93] Sözen A., Menlik T., Gürü M., Boran K., Kılıç F., Aktaş M., Çakır M. T., " A comparative investigation on the effect of fly-ash and alumina nanofluids on the thermal performance of two-phase closed thermo-syphon heat pipes", Applied Thermal Engineering, 96: 330-337, (2016).

[94] Eidan A. A., AlSahlani A., Ahmed A. Q., Al-fahham M., Jalil J. M., " Improving the performance of heat pipe-evacuated tube solar collector experimentally by using Al2O3 and CuO/acetone nanofluids", Solar Energy, 173:780-788, (2018).

[95] Ozsoy A., Çorumlu V., " Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications", Renewable Energy, 122: 4, (2018).

[96] Zhao S., Xu G., Wang N., Zhang X., " Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe", Nanomaterials, 8: 2, (2018).

[97] Jin H., Lin G., Zeiny A., Bai L., Cai J., Wen D., " Experimental study of transparent oscillating heat pipes filled with solar absorptive nanofluids", International Journal of Heat and Mass Transfer, 139: 789-801, (2019).

[98] Kaya M., Gürel A. E., Ağbulut Ü., Ceylan İ., Çelik S., Ergün A., Acar B., " Performance analysis of using CuO-Methanol nanofluid in a hybrid system with concentrated air collector and vacuum tube heat pipe", Energy Conversion and Management, 199:111936, (2019).

[99] Dehaj M. S., Mohiabadi M. Z., " Experimental study of water-based CuO nanofluid flow in heat pipe solar collector", Journal of Thermal Analysis and Calorimetry, 137: 2061-2072, (2019).

[100] Su U. Ö., "Improvement of Performance with Nano Solution in Heat Pipe Solar Collectors", Gazi University Institute of Science and Technology, Department of Energy Systems Engineering, Ph.D. Thesis, 96, (2019).

[101] Mahendran M., Lee G. C., Sharma K. V., Shahrani A., Bakar R. A., “Performance Of Evacuated Tube Solar Collector Using Water-Based Titanium Oxide Nanofluid”, Journal of Mechanical Engineering and Sciences (JMES), 3: 301-310, (2012).

[102] Ghaderian J., Che Sidik N. A., “An experimental investigation on the effect of Al2O3/distilled water nanofluid on the energy efficiency of evacuated tube solar collector”, International Journal of Heat and Mass Transfer, 108: 972-987, (2017).

[103] Iranmanesh S., Chyuan Ong H., Bee Chin Ang, Sadeghinezhad E., Esmaeilzadeh A., Mehrali M., “Thermal performance enhancement of an evacuated tube solar collector using graphene nanoplatelets nanofluid”, Journal of Cleaner Production, 162: 121-129, (2017).

[104] Yang Gana Y., Chyuan Onga H., Chuan Ling T., Zulkiflia N.W.M., Chin-Tsan Wang, Yang Y., “Thermal conductivity optimization and entropy generation analysis of titanium dioxide nanofluid in evacuated tube solar collector”, Applied Thermal Engineering, 145: 155-164, (2018).

[105] Sharafeldin M. A., Gróf G., “Experimental investigation of flat plate solar collector using CeO2-water nanofluid”, Energy Conversion and Management, 155: 32-41, (2018).

[106] Mahbubul I. M., Mohammad Mumtaz A. K., Nasiru I. I., Ali H. M., Fahad A., Saidur R., “Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector”, Renewable Energy, 121: 36-44, (2018).

[107] Mercan M., Yurddaş A.., "Numerical analysis of evacuated tube solar collectors using nanofluids", Solar Energy, 191:167-179, (2019).

[108] Sharafeldin M. A., Grof G., " Efficiency of evacuated tube solar collector using WO3/Water nanofluid", Renewable Energy, 134: 453-460 (2019).

[109] Sadeghi G., Najafzadeh M., Ameri M., “Thermal characteristics of evacuated tube solar collectors with coil inside: An experimental study and evolutionary algorithms”, Renewable Energy, 151: 575-588, (2020).

[110] Lie Y., Xie H., Yu W. J, “Investigation on heat transfer performances of nanofluids in solar collector”, Mater. Sci. Forum., 694:33–6, (2011).

[111] Taylor R., Phelan P., Otanicar T., Walke rC., Nguyen M., Trimble S., “Applicability of nanofluids in high flux solar collectors”, J. Renew. Sustain. Energy, 3:1–15, (2011).

[112] Rahman M., Mojumder S., Saha S., Mekhilef S., Saidur R., “Augmentation of natural convection heat transfer in triangular shape solar collector by utilizing water based nanofluids having a corrugated bottom wall”, Int. Commun Heat Mass Transf., 50:117–127, (2014).

[113] Goudarzi K., Shojaeizadeh E., Nejati F., “An experimental investigation on the simultaneous effect of CuO–H2O nanofluid and receiver helical pipe on the thermal efficiency of a cylindrical solar collector”, Appl. Thermal Eng., 73:1236–43, (2014).

[114] Rahman M., Mojumder S., Saha S., Mekhilef S., Saidur R., “Effect of solid volume fraction and tilt angle in a quarter circular solar thermal collectors filled with CNT-water nanofluid”, Int. Commun Heat Mass Transf., 57:79–90, (2014).

[115] Tong Y., Kim J., Cho H., “Effects of thermal performance of enclosed-type Evacuated U-tube solar collector with multi-walled carbon nanotube/water nanofluid”, Renewable Energy, 83:463–73, (2015).

[116] Colangelo G., Favale E., Miglietta P., DeRisi A., Milanese M., Laforgia D., “Experimental test of an innovative high concentration nanofluid solar collector”, Applied Energy, 154:874–81, (2015).

[117] Younis A., Elsarrag E., Alhorr Y. M., Onsa M. H., “The Influence of Al2O3-ZnO-H2O Nanofluid on the Thermodynamic Performance of Photovoltaic-Thermal Hybrid Solar Collector System”, Innov. Ener. Res., 7(1): 187, (2018).

[118] Sruthi B. “Nanotechnology in solar water heater”, Coimbatore: National Conference on Developing Scenario in Applied Sciences and Communicative English, Kumaraguru College of Technology, 27–9, (2012).

[119] Khanafer K., Vafai K., “Applications of nanomaterials in solar energy and desalination sectors”, Adv. Heat Transf., 45:303–29, (2013).

[120] Javadi F., Saidur R., Kamalisarvestani M., “Investigating performance improvement of solar collectors by using nanofluids”, Renew. Sustain. Energy Rev., 28:232–45, (2013).

[121] Al-Shamani A., Yazdi M., Alghoul M., Abed A., Ruslan M., “Nanofluids for improved efficiency in cooling solar collectors-a review”, Renew. Sustain Energy Rev., 38:348–67, (2014).

[122] Chaudhari K., Walke P, “Applications of nanofluid in solar energy-a review”, Int. J. Eng. Res. Technol., 3:460–3, (2014).

[123] Kasaeian A., Eshghi A., Sameti M., “A review on the applications of nanofluids in solar energy systems, Renew. Sustain. Energy Rev., 43:584–98, (2015).

[124] Verma S., Tiwari A., “Progress of nanofluid application in solar collectors: a review”, Energy Convers Manag., 100:324–46., (2015).

[125] Hussein A., Walunj A., Kolsi L., “Applications of nanotechnology to enhance the performance of the direct absorption solar collectors., J. Thermal Eng., 2:529–40, (2016).

___

Bibtex @derleme { politeknik751805, journal = {Politeknik Dergisi}, eissn = {2147-9429}, address = {Gazi Üniversitesi Teknoloji Fakültesi 06500 Teknikokullar - ANKARA}, publisher = {Gazi Üniversitesi}, year = {2021}, volume = {24}, number = {3}, pages = {1073 - 1091}, doi = {10.2339/politeknik.751805}, title = {Effects of Using Nanofluids in Solar Collectors}, key = {cite}, author = {Ünvar, Sinan and Menlik, Tayfun} }
APA Ünvar, S. & Menlik, T. (2021). Effects of Using Nanofluids in Solar Collectors . Politeknik Dergisi , 24 (3) , 1073-1091 . DOI: 10.2339/politeknik.751805
MLA Ünvar, S. , Menlik, T. "Effects of Using Nanofluids in Solar Collectors" . Politeknik Dergisi 24 (2021 ): 1073-1091 <
Chicago Ünvar, S. , Menlik, T. "Effects of Using Nanofluids in Solar Collectors". Politeknik Dergisi 24 (2021 ): 1073-1091
RIS TY - JOUR T1 - Effects of Using Nanofluids in Solar Collectors AU - Sinan Ünvar , Tayfun Menlik Y1 - 2021 PY - 2021 N1 - doi: 10.2339/politeknik.751805 DO - 10.2339/politeknik.751805 T2 - Politeknik Dergisi JF - Journal JO - JOR SP - 1073 EP - 1091 VL - 24 IS - 3 SN - -2147-9429 M3 - doi: 10.2339/politeknik.751805 UR - Y2 - 2020 ER -
EndNote %0 Politeknik Dergisi Effects of Using Nanofluids in Solar Collectors %A Sinan Ünvar , Tayfun Menlik %T Effects of Using Nanofluids in Solar Collectors %D 2021 %J Politeknik Dergisi %P -2147-9429 %V 24 %N 3 %R doi: 10.2339/politeknik.751805 %U 10.2339/politeknik.751805
ISNAD Ünvar, Sinan , Menlik, Tayfun . "Effects of Using Nanofluids in Solar Collectors". Politeknik Dergisi 24 / 3 (Eylül 2021): 1073-1091 .
AMA Ünvar S. , Menlik T. Effects of Using Nanofluids in Solar Collectors. Politeknik Dergisi. 2021; 24(3): 1073-1091.
Vancouver Ünvar S. , Menlik T. Effects of Using Nanofluids in Solar Collectors. Politeknik Dergisi. 2021; 24(3): 1073-1091.
IEEE S. Ünvar ve T. Menlik , "Effects of Using Nanofluids in Solar Collectors", Politeknik Dergisi, c. 24, sayı. 3, ss. 1073-1091, Eyl. 2021, doi:10.2339/politeknik.751805