Güneş Enerjili Termoelektrik Jeneratörde Pasif Su Soğutmanın Deneysel İncelenmesi

Bu çalışmada, güneş enerjisinden elektrik üretmek için bir termoelektrik jeneratör (TEG) sistemi tasarlanmıştır. TEG'in sıcak yüzeyini ısıtmak için güneş enerjili iki fazlı kapalı termosifon (TPCT) tipi ısı borusu kullanılmış ve soğuk tarafı soğutmak için 1200 cc kapasiteli pasif su soğutmalı bir sistem tasarlanmış ve üretilmiştir. Soğutma sistemi, verimli bir soğutma sağlamak için doğal bir su sirkülasyonu sağlayan birincil ve ikincil bölümler olarak iki kısma sahiptir. Literatürdeki çalışmaların çoğunda tek bir TEG kullanılırken, bu çalışmada daha fazla elektrik üretmek için basit, kolay ve ucuz bir tasarım elde etmek amacıyla 5 TEG kullanılmıştır. Sadece pasif su soğutmanın etkisi değil, aynı zamanda reflektör kullanmanın sistem verimliliği üzerindeki etkisi deneysel olarak test edilmiştir. Sistem, reflektör olmayan, yarı reflektör ve tam reflektör olmak üzere üç farklı koşulda güneş enerjisi ile çalıştırılmıştır. Elektriksel ve termal veriler bir bilgisayara kaydedilir ve karşılaştırma ve hesaplamalar için 08:00-15:00 saatleri arasında elde edilen veriler kullanılmıştır. Sadece maksimum açık devre voltajına ulaşılan TEG-1 için, maksimum çıkış gücü, elektriksel verim ve Seebeck katsayısı hesaplamaları yapılmıştır. Sonuçlar, küçük kapasiteli pasif su soğutmalı bir ısı borusu kullanıldığında, elektrik üretmek için 5 adet TEG için gerekli sıcaklık farkına ulaşılabileceğini göstermiştir.

Experimental investigation of passive water cooling in solar heating thermoelectric generator

In this study, a thermoelectric generator (TEG) system is designed to produce electricity from solar energy. Solar powered twophase closed thermosiphon (TPCT) type heat pipe is used to heat the hot surface of the TEG, and a 1200 cc capacity passive watercooled system is designed and manufactured to cool the cold side. The cooling system has two sections as primary and secondarysections which provide a natural water circulation to achieve an efficient cooling. A single TEG is used in most studies in theliterature while 5 TEGs are used in this study to obtain a simple, easy and cheap design to generate more electricity. Not only theeffect of passive water cooling, but also the effect of using a reflector on the system efficiency is tested experimentally. The systemis operated by solar power under three different conditions as non-reflector, semi-reflector and full-reflector. Electrical and thermaldata are recorded in a computer and data obtained from 08:00 to 15:00 is used for comparison and calculations. Maximum outputpower, electrical efficiency and Seebeck coefficient calculations are made for only TEG-1 in which the maximum open-circuitvoltage is reached. Results showed that using a heat pipe with a small capacity passive water-cooling, the temperature differencefor five TEGs can be reached to generate electricity.

___

  • [1] Jian L., Tianjun L., Bihong L. “Performance analysis and load matching of a photovoltaic–thermoelectric hybrid system”, Energy Conversion and Management, 105: 891–899, (2015).
  • [2] Tian Y., Zhao C.Y. “A review of solar collectors and thermal energy storage in solar thermal applications”, Applied Energy, 104: 538–553, (2013).
  • [3] Mills D., “Advances in solar thermal electricity technology”, Solar Energy, 76: 19-31, (2004).
  • [4] Pandey A.K., Tyagi V.V., Selvaraj J.A/L., Rahim N.A., Tyagi S.K. “Recent advances in solar photovoltaic systems for emerging trends and advanced applications”, Renewable and Sustainable Energy Reviews, 53: 859- 884, (2016).
  • [5] He W., Zhang G., Zhang X., Ji J., Li G., Zhao X. “Recent development and application of thermoelectric generator and cooler”, Applied Energy, 143: 1-25, (2015).
  • [6] Jarman J.T., Khalil E.E., Khalaf E. “Energy analyses of thermoelectric renewable energy sources”. Open J. Energy Efficiency, 2: 143-153, (2013).
  • [7] Angeline A.A., Jayakumar J., Asirvatham L.G., Marshal J.J., Wongwises S. “Power generation enhancement with hybrid thermoelectric generator using biomass waste heat energy”, Experimental Thermal and Fluid Science, 85: 1–12, (2017).
  • [8] Gao H.B., Huang G.H., Li H.J., Qu Z.G., Zhang Y.J. “Development of stove-powered thermoelectric generators: a review”, Applied Thermal Engineering, 96: 297-310, (2016).
  • [9] Orr B., Akbarzadeh A., Mochizuki M., Singh R. “A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes”, Applied Thermal Engineering, 101: 490-495, (2016).
  • [10] Suman S., Khan M.K., Pathak M. “Performance enhancement of solar collectors – A review”, Renewable and Sustainable Energy Reviews, 49: 192–210, (2015).
  • [11] Champier D. “Thermoelectric generators: A review of applications”, Energy Conversion and Management, 140: 167–181, (2017).
  • [12] Sun D., Shen L., Yao Y., Chen H., Jin S., He H. “The realtime study of solar thermoelectric generator”, Applied Thermal Engineering, 119: 347-359, (2017).
  • [13] Baranowski L.L., Snyder G.F., Toberer E.S. “Concentrated solar thermoelectric generators”, Energy & Environmental Science, 5: 9055-9067, (2012).
  • [14] Lertsatitthanakorn C., Jamradloedluk J., Rungsiyopas M. “Electricity generation from a solar parabolic concentrator coupled to a thermoelectric module”, Energy Procedia, 52: 150-158, (2014).
  • [15] Date A., Date A., Dixon C., Akbarzadeh A. “Theoretical and experimental study on heat pipe cooled thermoelectric generators with water heating using concentrated solar thermal energy”, Solar Energy, 105: 656-668, (2014).
  • [16] Date A., Date A., Dixon C., Singh R., Akbarzadeh A. “Theoretical and experimental estimation of limiting input heat flux for thermoelectric power generators with passive cooling”, Solar Energy, 111: 201-217, (2015).
  • [17] Chávez-Urbiola E.A., Vorobiev Y.V. “Investigation of solar hybrid electric/thermal system with radiation concentrator and thermoelectric generator”, International Journal of Photoenergy, 1-7, (2013).
  • [18] Sundarraj P., Taylor R.A., Banerjee D., Maity D., Roy S.S. “Experimental and theoretical analysis of a hybrid solar thermoelectric generator with forced convection cooling”, Journal of Physics D: Applied Physics, 50: 1- 11, (2017).
  • [19] Bjørk R., Nielsen K.K. “The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system”, Solar Energy, 120: 187-194, (2015).
  • [20] Makki A., Omer S., Su Y., Sabir H. “Numerical investigation of heat pipe-based photovoltaic– thermoelectric generator (HP-PV/TEG) hybrid system”, Energy Conversion and Management, 112: 274-287, (2016).
  • [21] He W., Su Y., Riffat S.B., Hou JX., Ji J. “Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit”, Applied Energy, 88: 5083-5089, (2011).
  • [22] Li G., Zhang G., He W., Ji J., Lv S., Chen X., Chen H. “Performance analysis on a solar concentrating thermoelectric generator using the micro-channel heat pipe array”, Energy Conversion and Management, 112: 191-198, (2016).
  • [23] Zhang M., Miao L., Kang Y.P., Tanemura S., Fisher C.A.J., Xu G., Li C.X., Fan G.Z. “Efficient, low-cost solar thermoelectric cogenerators comprising evacuated tubular solar collectors and thermoelectric modules”, Applied Energy, 109: 51-59, (2013).
  • [24] Özdemir A.E., Köysal Y., Özbaş E., Atalay T. “The experimental design of solar heating thermoelectric generator with wind cooling chimney”, Energy Conversion and Management, 98: 127-133, (2015).
  • [25] Atalay T., Köysal Y., Özdemir A.E., Özbaş E. “Evaluation of energy efficiency of thermoelectric generator with two-phase thermo-syphon heat pipes and nano-particle fluids”, International Journal of Precision Engineering and Manufacturing-Green Technology, 5 (1): 5-12, (2018).
  • [26] Sajid M., Hassan I., Rahman A. “An overview of cooling of thermoelectric devices”, Renewable and Sustainable Energy Reviews, 78: 15-22, (2017).
  • [27] Chávez-Urbiola E.A., Vorobiev Y.V., Bulat L.P. “Solar hybrid systems with thermoelectric generators”, Solar Energy, 86: 369-378, (2012).
  • [28] Singh R., Tundee S., Akbarzadeh A. “Electric power generation from solar pond using combined thermosyphon and thermoelectric modules”, Solar Energy, 85: 371-378, (2011).
  • [29] Deasy M.J., Baudin N., O'Shaughnessy S.M., Robinson A.J. “Simulation-driven design of a passive liquid cooling system for a thermoelectric generator”, Applied Energy, 205: 499-510, (2017).
  • [30] TECTEG, https://thermoelectric-generator.com/wpcontent/uploads/2014/04/SpecTEG1-1263- 4.3Thermoelectric-generator1.pdf
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ