Göçme Yükü Etkisindeki Köprü Kemerlerinin Yapısal Davranışı

Osmanlı İmparatorluğu Klasik Döneminin önde gelen mimarlarından Mimar Sinan tarafından tasarımı yapılan köprülerin birçoğu, kullanılan malzeme ve yapım tekniklerine bağlı olarak günümüzde varlıklarını sürdürmektedir. Bu köprülerde genellikle kemer formlarının tercih edilmesinin sebebi çekme dayanımı düşük doğal malzemelerden inşa edilmesidir. Çalışmada, Mimar Sinan tarafından tasarlanan 10 köprü ve bu köprülerde bulunan 48 kemer yapısı üzerinde istatistiksel bir değerlendirme yapılmıştır. Bu değerlendirmeye bağlı olarak açıklığı ve yüksekliği farklı 25 kemer sonlu elemanlar yöntemiyle modellenmiştir. Bu kemer yapılarının mafsallaşma durumları, göçme yükü, maksimum yerdeğiştirmesi, sünekliği, enerji tüketme kapasitesi incelenmiş ve regresyon analizi yapılmıştır. Çalışma sonucunda, incelenen köprü kemerleri için maksimum yerdeğiştirmeyi ve göçme yükünü veren bağıntılar önerilmiştir.

The Structural Behavior of Bridge Arches Under Collapse Load

Many of the bridges designed by Mimar Sinan, the leading architect of the Classical Ottoman Period, has continued to exist today thanks to their materials and construction techniques. The reason that arch forms are generally preferred on these bridges is that they are constructed from natural materials with low tensile strength. In the study, 10 bridges and 48 arches in these bridges designed by Mimar Sinan were analysed statistically. Depending on this analysis, 25 arches with varying lengths and heights were modeled by finite element method. For these arches; hinge conditions, collapse loads, maximum displacements, ductility and energy dissipation capacities were examined and regression analyses were performed. Equations have been proposed which gives maximum displacement and collapse load for examined arches.

___

  • Oliveira D.V., Lourenço P.B., Lemos C., “Geometric issues and ultimate load of masonry arch bridges from the northwest Iberian Peninsula”, Engineering Structures, 32(12):3955-65 (2010).
  • Cavicchi A., Gambarotta L., “Collapse analysis of masonry bridges taking into account archfill interaction”, Engineering Structures, 27(4): 605-15 (2005).
  • Cavicchi A., Gambarotta L., “Two-dimensional finite element upper bound limit analysis of masonry bridges”, Computers & Structures, 84(31-32): 2316-28 (2006).
  • Melbourne C., Wang J., Tomor A., Holm G., Smith M., Bengtsson P.E., Bien J., Kaminski T., Rawa P., Casas J.R., Roca P., Molins C., “Masonry Arch Bridges Background document D4.7.”, Sustainable Bridges, Report number: Deliverable D4.7 (2007).
  • Hughes T.G., Blackler M.J., “A review of the UK masonry arch assessment methods”, Proceedings of the ICE-Structures and Buildings, 122 (3):305-315 (1997).
  • Page J., “TRL State of the Art Review: Masonry Arch Bridges”, London, UK, Her Majesty's Stationery Office (1993).
  • Rouf M.A. “Fundamental properties of brickwork with particular emphasis to brickwork arches”, PhD Thesis, University of Liverpool, Liverpool, England (1984).
  • Zhang Y., “Advanced nonlinear analysis of masonry arch bridges”, PhD Thesis, Imperial College London, London, England (2015).
  • Lourenço P.B., “Computational Strategies for Masonry Structures”, PhD Thesis, Delft University of Technology, Delft, Holland, 1996.
  • Lourenço P.B., “Current experımental and numerical issues in masonry research”, SÍSMICA 2004 - 6º Congresso Nacional de Sismologia e Engenharia Sísmica, Guimaraes, Portugal (2004).
  • Liu G.R., Quek S.S. “The finite element method: a practical course”, Butterworth-Heinemann (2013).
  • ANSYS, Swanson Analysis System, Ansys Inc, Canonsburg, PA, (2013).
  • Williams K.J., Warnke E.P., “Constitutive Model for the Triaxial Behaviour of Concrete”, Proceeding of the International Association for Bridge and Structural Engineering, Bergamo, Italy, 19:174-86 (1975).
  • Gibbons N., Fanning P.J., "Progressive cracking of masonry arch bridges", Proceedings of the Institution of Civil Engineers: Bridge Engineering, 169:93-112 (2015).
  • Alaboz M., “Mimar Sinan Köprülerinin Güncel Durum Değerlendirmesi ve Kapuağası Köprüsü Restorasyon Projesi”, Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye (2009).
  • Ril 805:Richtilnie 805, Guideline for Load and Resistance Assesment of Existing European Railway Bridges, COWI A/S (2007).
  • Kahraman S., Fener M., Kozman E. “Predicting the compressive and tensile strength of rochs from indentation hardness”, J. South. Af. Inst. Min. Metall., 112(5): 331-339 (2012).
  • Karaton M., Aksoy H.S., Sayın E., Calayır Y., “Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels”, Engineering Failure Analysis, 79: 408-421 (2017).
  • Ersoy HY. “Kompozit malzeme”, Literatür Yayınları (2001).
  • Kaushik H.B., Durgesh C.R., Sudhir K.J., “ Stress-strain caracteristic of clay brick masonry under uniaxial compression”, Journal of materials in Civil Engineering, 19(9): 728-739 (2007).
  • ENV 1996-1-1, C.E. de Normalisation, Eurocode 6: Design of Masonry Structures-Part 1-1: General Rules for Reinforced and Unreinforced Masonry Structures, Comit Europen de Normalisation, Brussels, Belgium (2005).
  • Lindley D.V., “Regression and correlation analysis”, New Palgrave: A Dictionary of Economics, 4:120-23 (1987).
  • Hocking RR. “The Analysis and Selection of Variables in Linear Regression”, Biometrics (1976).
  • Çeçen K. Sinan’ın Yaptığı Köprüler. Editör: Sadi Bayram. Mimarbaşı Koca Sinan Yaşadığı Çağ ve Eserleri, Cilt 1, 429-438, Ankara, Türkiye, Vakıflar Genel Müdürlüğü & Türkiye Vakıflar Bankası (1988).
  • Bozkurt O. “Koca Sinan’ın Köprüleri (XVI. Asır Osmanlı Medeniyeti İçinde Sinan, Köprülerin Mimari Bakımdan Tetkiki, Siluet ve Abide Kıymetleri)”, İstanbul, Türkiye, İTÜ Mimarlık Fakültesi (1952).
  • SPSS: IBM Corp., IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp., (2012).