Fonksiyonel Kademelendirilmiş Plakalarda Kalınlık Boyunca Kompozisyonel Değişimin Balistik Performans Üzerindeki Etkisinin İncelenmesi

Bu çalışmada, fonksiyonel kademelendirilmiş plakalarda kalınlık boyunca bileşenlerin hacimsel değişim sürekliliğinin, balistik performans üzerindeki etkisi sayısal olarak incelenmiştir. Sayısal analizler eksplisit dinamik analiz yapabilen LS-DYNA sonlu elemanlar yazılımı kullanılarak yapılmıştır. Seramik (SiC) ve metal (Al) bileşenlerden oluşan fonksiyonel kademelendirilmiş plakalarımda kademelendirilmiş bölgedeki lokal malzeme özelliklerinin hesaplanmasında, mikro mekanik model olarak Mori-Tanaka şeması kullanılmıştır. Plakaların elasto plastik davranışlarının modellenmesi için de, iki farklı bileşene sahip yapılarda bileşenlerin, tek eksenli gerilme-şekil değiştirme değerlerini kullanarak kompozit malzemenin gerilme şekil değiştirme eğrisinin oluşturulması için geliştirilmiş olan TTO model kullanılmıştır. 

An Investigation of the Ballistic Performance of Functionally Graded Plates have Different Compositional Gradation Through the Plate Thickness

In this study, the ballistic performance of functionally graded plates (FGSPs) which have different layer numbers have been investigated numerically. Numerical analyses were performed using LS-DYNA finite element software which can perform an explicit dynamic analysis. The functionally graded sandwich plate is composed of a mixture of ceramic (SiC) and metal (Al) constituents, Mori–Tanaka scheme was used to determine the effective material properties at any point inside functionally graded plates. In order to define the elasto-plastic behavior of the functionally graded layers, the TTO (Tamura-Tomota-Ozawa) model was used.

___

  • 1] R. M. Mahamood, E. T. Akinlabi, “Functionally Graded Material”, Springer, Switzerland, (2017).
  • [2] Mori, T. and Tanaka, K.,1973. “Average stress in matrix and average elastic energy of materials with misfitting inclusions”, Acta Metallurgica, 21(5): 571–574, (1973).
  • [3] Benveniste, Y., “A new approach to the application of Mori-Tanaka’s theory in composite materials”, Mechanics of Materials, 6(2): 147 – 157, (1987).
  • [4] Tamura, I., Tomota, Y., and Ozawa, H., “Srength and ductulity of Fe-Ni-C alloys composed of austenite and martensite with various strength”, in Proceedings of the Third Conference on Strength of Metals and Alloys, 1: 611–615, (1973).
  • [5] Gunes R, Aydin M, Apalak MK, et al. “Experimental and numerical investigations of low velocity impact on functionally graded circular plates”, Composites Part B: Engineering, 59: 21-32, (2014).
  • [6] Kieback, B., Neubrand, A., and Riedel, H., “Processing techniques for functionally graded materials”, Materials Science and Engineering: A, 362(1–2): 81–106, (2003).
  • [7] Zhou, M., Xi, J., and Yan, J., “Modeling and processing of functionally graded materials for rapid prototyping”, Journal of Materials Processing Technology, 146(3), 396 – 402, (2004).
  • [8] El-Desouky, A., Kassegne, S.K., Moon, K.S., McKittrick, J., and Morsi, K., “Rapid processing; characterization of micro-scale functionally graded porous materials”, Journal of Materials Processing Technology, 213(8): 1251–1257, (2013).
  • [9] Shabana, Y.M. ve Noda, N. “Thermo-elasto-plastic Stresses in Functionally Graded Materials Subjected to Thermal Loading Taking Residual Stresses of the Fabrication Process into Consideration”, Composites Part B: Engineering, 32: 111-121, (2001).
  • [10] Shaw, L.L., “Thermal Residual Stresses in Plates and Coatings Composed of Muiti-Layered and Functionally Graded Materials”, Composites Part B:Engineering, 29: 199-210, (1998).
  • [11] Nemat-Alla, M., “Reduction of Thermal Stresses by Devoloping Two-dimensional Functionally Graded Materials” , Int. Jour. of Solids and Structures, 40: 7339-7356 , (2003).
  • [12] Caroline, S. L., Sung-Hoon, A., Lutgard, C. D., Gareth, T., “Effect of functionally graded material (FGM) layers on the residual stress of polytypoidally joined Si3N4–Al2O3”, Materials Science and Engineering A, 434: 160-165, (2006).
  • [13] NATO STANAG 2920, “Ballistic test method for personal armour materials and combat clothing”, (2003).
  • [14] MIL-DTL-46593 B (MR) w/AMENDMENT 1, Projectile, calibers .22, .30, .50, and 20 mm fragment-simulating, (2008).
  • [15] Gonçalves, D., de Melo, F., Klein, A., and Al-Qureshi, H., “Analysis and investigation of ballistic impact on ceramic/metal composite armour”, International Journal of Machine Tools and Manufacture, 44(2–3): 307–316, (2004).
  • [16] Liu, D., Raju, B.B., and Dang, X., “Impact perforation resistance of laminated and assembled composite plates”, International Journal of Impact Engineering, 24(6–7): 733–746, (2000).
  • [17] M. Aydin., M. K. Apalak., Z. G. Apalak., “Effect of Number of Layers on the Ballistics Performance of Functionally Graded Sandwich Plates”, 14th International Symposium on Functionally Graded Materials, Bayreuth-Germany, 215-218, (2016 ).