Faz Değiştiren Malzemelerle Termal Enerji Depolayan Bir Isı Değiştiricisinin Sayısal Analizi

Bu çalışmada, termal enerji depolama (TED) sistemlerinde kullanılan bir iç içe borulu ısı değiştiricisinde faz  değiştiren malzemenin (FDM) erime sürecindeki ısıl davranışı, kanatçıklı ve kanatçıksız modeller ile sayısal analizi yapılarak incelenmiştir. Sayısal analizler, Hesaplamalı Akışkanlar Dinamiği (HAD) yaklaşımını kullanan ANSYS Fluent ticari programı ile iki boyutlu ve zamana bağlı olarak gerçekleştirilmiştir. Öncelikle literatürde mevcut deneysel bir çalışma referans alınarak sayısal analiz kanatçıksız model için doğrulanmıştır. Bu modelde ısı transfer akışkanı (ITA)’nın sıcaklıkları 50 oC, 60 oC ve 70 oC alınarak ITA sıcaklığının FDM erime süresine etkisi değerlendirilmiştir. Daha sonra bu modele 6, 9, 12 ve 15 adet kanatçıklar eklenip, kanatçık sayısının da FDM’nin erime süresine etkisi araştırılmıştır. Yapılan sayısal çalışmada elde edilen sonuçlar, ITA sıcaklığı ve kanat sayısı arttıkça FDM’nin erime süresinin azaldığını, böylece FDM’nin daha hızlı bir şekilde ITA’dan ısıyı depoladığını göstermektedir. Kanat etkenlikleri sırasıyla 2,66, 3,49, 4,32 ve 5,15 olan 6, 9, 12 ve 15 kanatçıklı modellerin kanatçıksız modele göre erime süresini %72,5, %76,7, %78,4 ve %80 azalttığı belirlenmiştir.  

Numerical Analysis of a Heat Exchanger That Stores Thermal Energy with Phase Change Materials

In this study, the thermal behavior of the phase change material (PCM) during melting process inside a shell-and-tube heat exchanger used in thermal energy storage (TES) systems has been investigated by numerical analysis with fin and without fin models. Two dimensional transient numerical analyzes have been carried out with the ANSYS Fluent commercial program using the computational fluid dynamics (HAD) approach. The study has been first validated for the without fin model with reference to an experimental study available in the literature. In this model, the effect of temperature of heat transfer fluid (HTF)  on PCM melting time has evaluated by taking HTF’s temperatures 50 oC, 60 oC and 70 oC. Then, 6, 9, 12 and 15 fins have been added to this model and the effect of the number of fins on the PCM melting time has been investigated. The results obtained in the numerical study show that as the HTF temperature and number of fins increase, the melting time of PCM decreases, so that PCM stores more rapidly the heat from HTF. It has been determined that the fin models with 6, 9, 12 and 15 which are 2,66, 3,49, 4,32 and 5,15 of fin effectiveness reduce the melting time by 72,5%, 76,7%, 78,4% and 80% respectively, according to without fin model.

___

  • [1] Iten, M. and Liu, S., “A work procedure of utilising PCMs as thermal storage systems based on air-TES systems”, Energy Conversion and Management, 77: 608-627, (2014).
  • [2] Khadiran, T., Hussein, M.Z., Zainal, Z. and Rusli, R., “Advanced energy storage materials for building applications and their thermal performance characterization: A review”, Renewable and Sustainable Energy Reviews, 57: 916-928, (2016).
  • [3] Rathod, M.K. and Banerjee, J., “Thermal stability of phase change materials used in latent heat energy storage systems: Areview”, Renewable and Sustainable Energy Reviews, 18: 246-258, (2013).
  • [4] Chow, L.C., Zhong, J.K. and Beam, J.E., ‘‘Thermal conductivity enhancement for phase change storage media’’, Heat and Mass Transfer, 23: 91-100, (1996).
  • [5] Velraj, R., Seeniraj, R.V., Hafner, B., Faber, C. and Schwarzer, K., ‘‘Heat transfer enhancement in a latent heat storage system’’, Solar Energy, 65: 171-180, (1999).
  • [6] Marin, J.M., Zalba, B., Cabeza, L.F. and Mehling, H., ‘‘Improvement of a thermal energy storage using plates with paraffin–graphite composite’’, International Journal of Heat and Mass Transfer, 48: 2561-2570, (2005).
  • [7] Osterman, E., Butala, V. and Stritih., U., “PCM thermal storage system for ‘free’ heating and cooling of buildings”, Energy and Buildings, 106: 125-133, (2015).
  • [8] Tay, N.H.S., Bruno, F. and Belusko, M., “Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD”, Applied Energy, 104: 79-86, (2013).
  • [9] Mat, S., Al-Abidi, A.A., Sopian, K., Sulaiman, M.Y. and Mohammad, A.Y., “Enhance heat transfer for PCM melting in triplex tube with internal-external fins”, Energy Conversion and Management, 74: 223-236, (2013).
  • [10] Medrano, M., Yilmaz, M.O., Nogués, M., Martorell, I., Roca, J. and Cabeza, L.F., “Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems”, Applied Energy, 86: 2047-2055, (2009).
  • [11] Hosseini, M.J., Ranjbar, A.A., Sedighi, K. and Rahimi, M., “A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger”, International Communications in Heat and Mass Transfer, 39: 1416-1424, (2012).
  • [12] Li, W. and Kong, C., “Numerical study on the thermal performance of a shell and tube phase change heat storage unit during melting process”, Advances in Mechanical Engineering, 6: 1-7, (2014).
  • [13] Jmal, I. and Baccar, M., “Numerical study of PCM solidification in a finned tube thermal storage including natural convection”, Applied Thermal Engineering, 84: 320-330, (2015).
  • [14] Cano, D., Funéz, C., Rodriguez, L., Valverde, J.L. and Sanchez-Silva, L., “Experimental investigation of a thermal storage system using phase change materials”, Applied Thermal Engineering, 107: 264-270, (2016).
  • [15] ANSYS, Inc. Fluent Theory Guide, USA, November 28, Chp:21.1-14, (2008).
  • [16] Pahamli, Y., Hosseini, M.J., Ranjbar, A.A. and Bahrampoury, R., “Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers”, Renewable Energy, 97: 344-357, (2016).
  • [17] Incropera, F.P. and Dewitt, D.P., “Fundamentals of Heat and Mass Transfer”, John Wiley Sons, New York, 303-577, (2003).
  • [18] Halıcı, F. and Gündüz, M., “Örneklerle ısı geçişi”, Birsen Yayınevi, İstanbul, 126-168, (2007).
  • [19] Çengel, Y. A. and Cimbala, J. M. “Akışkanlar mekaniği temelleri ve uygulamaları” (çev.T. Engin, H. R. Öz, H. Küçük ve Ş. Çeşmeci), Güven Bilimsel Yayınevi, İzmir, 818-830, (2006).
  • [20] Eslamnezhad, H. and Rahimi, A.B., “Enhance heat transfer for phase-change materials in triplex tube heat exchanger with selected arrangements of fins”, Applied Thermal Engineering, 113: 813-821, (2017).