Farklı Alüminyum Kaynaklarından Co-Al İçerikli Metal Oksitlerin Üretimi ve Yapısal Özelliklerine Etkisinin İncelenmesi

Bu araştırma çalışmasında, farklı alüminyum kaynakları kullanılarak emdirme yöntemi ile spinel yapıda kobalt (Co) ve alüminyum (Al)  içerikli metal oksitlerin üretimi gerçekleştirilmiştir. Boehmit (Al(OH)3) ve korundum (α-Al2O3) olmak üzere iki farklı Al kaynaklarına kobalt(II)klorürün (CoCl2·6H2O) ıslak emdirmesi ile elde edilen örneklerin termal analizleri (DTA/TG) gerçekleştirilerek Al kaynağının Co-Al oksit sıcaklığına olan etkisi belirlenmiştir. Termogravimetrik analiz sonucunda belirlenen üç farklı sıcaklıkta örnekler ısıl işleme tabi tutularak kristal, yüzey ve morfolojik yapıda meydana gelen değişimler incelenmiştir. Yapısal analizler sonucunda, kullanılan Al kaynağının ve ısıl işlem sıcaklığının Co-Al oksit üretiminde önemli etkiye sahip olduğu görülmüştür. Deneysel çalışmalar sonucunda tek fazlı spinel yapıdaki CoAlO4 üretimi için Al kaynağı olarak boehmit (Al(OH)3) kullanılması ve emdirme yöntemi sonrasında ısıl işlem sıcaklığının 500 °C seçilmesi önerilmektedir. 

The Syntesis of Co-Al Based Metal Oxides From Different Aluminum Sources and Their Effect on The Structural Properties

In this research study, cobalt (Co) and aluminum (Al) -based metal oxides were produced in the spinel structure by impregnation technique by using different Al sources. The samples were synthesized by wet impregnation of cobalt (II) chloride (CoCl2·6H2O) on two different Al sources as boehmit (Al (OH)3) and corundum (α-Al2O3), Thermal analyses (DTA/TG) of the samples were used for understanding the effect on oxide temperature was determined. As a result of the thermogravimetric analysis, the samples were subjected to heat treatment at three different temperatures and the changes in crystal, surface and morphological structure were investigated. As a result of the structural analysis, it has been found that the Al source and the heat treatment temperature have a significant effect on the production of Co-Al oxide. As a result of experimental studies, it is suggested that boehmit (Al(OH)3) is used as Al source for CoAlO4 production in monophasic spinel structure and heat treatment temperature 500 °C is chosen after impregnation method.

___

  • [1] Duan X., Pan M., Yu F., Yuan D. “Synthesis, structure and optical properties of CoAl2O4 spinel nanocrystals”, Journal of Alloys and Compounds, 509:1079–1083, (2011)
  • [2] Srisawad N., Chaitree W., Mekasuwandumrong O., Praserthdam P., Panpranot J., “Formation of CoAl2O4 Nanoparticles via Low-Temperature Solid-State Reaction of Fine Gibbsite and Cobalt Precursor”, Journal of Nanomaterials, 108369, 8, (2012)
  • [3] Merino M.C.G., Estrella A.L., Rodriguez M.E., Acuña L., Lassa M.S., Lascalea G.E., Vázquez P. “Combustion Syntheses of CoAl2O4 Powders Using Different Fuels”, Procedia Materials Science, 8:519 – 525, (2015)
  • [4] Salavati-Niasari M., Farhadi-Khouzani M., Davar F. “Bright blue pigment CoAl2O4 nanocrystals prepared by modified sol–gel method”, Journal of Sol-Gel Science and Technology, 52:321–327, (2009)
  • [5] Gardey Merino M. C., Lascalea G. E., Sánchez L. M., Vázquez P. G., Cabanillas E. D., Lamas D. G. “Nanostructured aluminium oxide powders obtained by aspartic acid-nitrate gel-combustion”, Journal of Alloys and Compounds, 495:578–582, (2010).
  • [6] Chemlal S., Larbot A., Persin M., Sarrazin J., Sghyara M, Rafiqa M. “Cobalt spinel CoAl2O4 via sol-gel process: elaboration and surface properties”, Materials Research Bulletin, 35:2515–2523, (2000)
  • [7] Otero Areán C., Peñarroya Mentruit M., Escalona Platero E., Llabrés i Xamena F.X., Parra J.B. “Sol–gel method for preparing high surface area CoAl2O4 and Al2O3 – CoAl2O4 spinels”, Materials Letters, 39:22–27, (1999)
  • [8] Cho W-S., Kakihana M. “Crystallization of ceramic pigment CoAl2O4 nanocrystals from Co–Al metal organic precursor”, Journal of Alloys and Compounds, 287:87–90, (1999)
  • [9] Li W., Li J., Guo J. “Synthesis and characterization of nanocrystalline CoAl2O4 spinel powder by low temperature combustion”, Journal of the European Ceramic Society, 23:2289–2295, (2003)
  • [10] Lorenzelli V. ve Bolis, V. "Preparation, bulk characterization and surface chemistry of high-surface-area cobalt aluminate", Materials Chemistry and Physic, 31:3:221-228, (1992)
  • [11] Chen Z., Shi E., Li W., Zheng Y., Wu N., Zhong W. "Particle size comparison of hydrothermally synthesized cobalt and zinc aluminate spinels", Journal of the American Ceramic Society 85: 12:2949-2955, (2002)
  • [12] Coşkuner B., Figen A.K., Pişkin, S. “Solid state preparation and reaction kinetics for Co/B as a catalytic/acidic accelerator for NaBH4 hydrolysis”, Reaction Kinetics, Mechanisms and Catalysis, 109:2:375-392, (2013)
  • [13] Živković, Ž.D., Dobovišek, B. “Kinetics of aluminium hydroxide dehydration”, Journal of Thermal Analysis and Calorimetry, 12:2:207-215, (1977)