Düşük Hidrojen Gaz Konsantrasyonunda Tungsten katkılı ZnO İnce filmlerin Gaz Sensörü Uygulamaları

Son zamanlarda, dizel, benzin ve propan gazı gibi fosil kaynaklardan gelen enerjinin yerini alabilecek alternatif bir enerji kaynağı olarak hidrojen gazının uygulanması için çalışmalar hızla önem kazanmaya başlamıştır. Bu nedenle, hidrojen gazı, vaat edilen alternatif bir enerji kaynağı olmanın ötesine geçtiği başlıca enerji kaynaklarından biri olarak kabul edilmektedir. Ancak, hidrojen gazı patlayıcıdır ve büyük bir yangına neden olabilir. Bu gazın rengi, kokusu ve tadı olmadığından, güvenlik için minimum miktarda hidrojen gazı algılayabilen çok hassas bir gaz sensörü üretimi yapılmalıdır. Dahası, hidrojen gazı son derece hafiftir ve atmosfere kolayca yayılır. Gaz konsantrasyonu % 4'ün üzerinde olduğunda bir patlama meydana gelebilir; bu nedenle ppm ölçekli hidrojen gazı algılayabilen sensörler geliştirilmelidir. Bu çalışmada Tungten (W) katkılı ZnO ince filmler kimyasal banyolama tekniği ile %1 ve % 2 katkılı olarak büyütüldü ve Hidrojen gaz (H2) algılama özellikleri incelendi. Üretilen numunenin farklı sıcaklıklarda (30°C-160°C) ve 5 ppm-100 ppm gaz konsantrasyonu aralığında elektriksel karakterizasyonu yapıldı. Çalışma sıcaklığı 100 C olarak bulundu. Sensörler, 5 ppm H2 gaz konsantrasyonuna karşı kabul edilebilir düzeyde duyarlılık sergiledi. %1 W-katkılı ZnO ince film 100 °C çalışma sıcaklığında diğer ince filmlere kıyasla daha yüksek algılama performansı gösterdi. %1 W-katkılı ZnO ince film 5 ppm H2 gazına karşı % 28,56 duyarlılık sergilerken, %2 W-katkılı ZnO ince film % 7 duyarlılık sergilediği hesaplandı. Ölçüm sonuçları, numunelerin gaz algılama özelliklerinin katkılamaya bağlı olarak değiştiğini gösterdi. 

Gas Sensor Applications of Tungsten Doped ZnO Thin Films in Low Hydrogen Gas Concentration

Recently, studies have been conducted to apply hydrogen gas as an alternative energy source that can replace energy from fossil sources such as diesel, gasoline, and propane gas. Therefore, hydrogen gas is regarded as one of the major energy sources it has gone beyond just a promise alternative energy source of energy. However, hydrogen gas is explosive, and it can cause a massive conflagration. Since this gas has no color, smell, and taste, highly sensitive gas sensor that can detect a minimal amounts of hydrogen gas must be installed for safety. An explosion can occur when the gas concentration is above 4%; for this reason, sensors that can detect ppm scale hydrogen gas must be developed. In this study, 1% and 2% Tungten (W) doped ZnO thin films were grown by chemical bathing technique and Hydrogen gas (H2) sensing properties were investigated. Electrical characterization of the samples at different temperatures (30 ° C-160 ° C) and different gas concentrations (5 ppm-100 ppm) was performed. The operating temperature was found at 100 C. The sensors exhibited acceptable sensitivity to 5 ppm H2 gas. 1% W-doped ZnO thin film showed higher sensing performance than other thin films at 100 ° C . 1 % W-doped ZnO thin film exhibited 28.56 % sensitivity to 5 ppm H2 gas, while the 2 % W-doped ZnO thin film exhibited 7% sensitivity. The results showed that the gas sensing properties of the samples varied depending on the doping. 

___

  • [1] Şennik, E. Yüksek Yönelimli Pirolitik Grafit (HOPG) Kullanılarak Paladyum Nanotel Dizilerinin Üretilmesi Ve Hidrojen Gazını Algılama Özelliklerinin İncelenmesi, Gebze Yüksek Teknoloji Enstitüsü, Mühendislik ve Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 88s, Gebze. (2009).
  • [2] Favier F., Walter E.C., Zach M.P., Benter T., Penner R.M..Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays. Science 293, 2227- 2231,(2001)
  • [3] Moschogiannaki M., Zouridi L., Sukunta J., Phanichphant S., Gagaoudakis E., Liewhiran C., Kiriakidis G., Binas V., High performance hydrogen gas sensors based on PdO-decorated p-type CoV2O6 nanoparticles. Sensors and Actuators: B. Chemical, 324:128744, (2020).
  • [4] Cai Z., Park S.,Synthesis of Pd nanoparticle-decorated SnO2 nanowires and determination of the optimum quantity of Pd nanoparticles for highly sensitive and selective hydrogen gas sensor. Sensors and Actuators: B. Chemical, 322, 128651,(2020).
  • [5] Motaung D.E., Mhlongo G.H., Makgwane P.R., Dhonge B.P., Cummings F.R., Swart H.C., Ray S.S.,Ultra-high sensitive and selective H2 gas sensor manifested by interface of n–n heterostructure of CeO2-SnO2 nanoparticles, Sensors and Actuators B; Chemical, 254: 984-995,(2018).
  • [6] Kim H., Pak Y., Jeong Y., Kim W., Kim J., Jung G.Y., Amorphous Pd-assisted H2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability, Sensors and Actuators B 262: 460–468,(2018). [7] Günkaya, G., Nanokristalin SnO2 Sentezlenmesi Ve Elektroforez Kaplama Yöntemiyle Sensör Üretimi, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 168s, Eskişehir,(2008).
  • [8] Karaduman I.,Kompakt zeolit modifiyeli gaz sensörünün tasarımı üretimi ve karakterizasyonu, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi,136s, Ankara,(2017). [9] Kanaparthi S., Govind Singh S., Solvent-free fabrication of a room temperature ammonia gas sensor by frictional deposition of a conducting polymer on paper,Organic Electronics, 68: 108-112,(2019).
  • [10] Chen W., Deng F., Xu M., Wang J., Wei Z., Wang Y.,GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations, Sensors & Actuators: B. Chemical,273: 498-504,(2018).
  • [11] Karaduman Er I., Çağırtekın A.O., Çorlu T., Yıldırım M.A., Ateş A., Acar S.,Low-level NO gas sensing properties of Zn1−xSnxO nanostructure sensors under UV light irradiation at room temperature, Bulletin Materials Science, 42: 32,(2019).
  • [12] Kumar V., Singh K., Sharma J., Kumar A., Vij A., Thakur A., Zn-doped SnO2 nanostructures: structural, morphological and spectroscopic properties, Journal of Material Science;Material İn Electronics, 28(24) : 18849–18856,(2017).
  • [13] Chang B.-Y., Wang C.-Y., Lai H.-F., Wu R.-J., Chavali M.,Evaluation of Pt/In2O3–WO3 nano powder ultra-trace level NO gas sensor, Journal of the Taiwan Institute of Chemical Engineers, 45: 1056–1064,(2014).
  • [14] Wang Y., Liu C., Wang Z., Song Z., Zhou X., Han N., Chen Y., Sputtered SnO2:NiO thin films on self-assembled Au nanoparticle arrays for MEMS compatible NO2 gas sensors, Sensors AND Actuators: B. Chemical, 278; 28–38,(2019).
  • [15] Karaduman I., Barin Ö., Yıldız D.E., Acar S.,The effect of ultraviolet irradiation on the ultra-thin HfO2 based CO gas sensor. Journal of Applied Physics 118, 174501,(2015).
  • [16] Thanh H. X., Trung D.D., Trung K. Q., Dam K. V., Duy N.V., Hung C.M., Hoa N. D., Hieu N. V.,On-chip growth of single phase Zn2SnO4 nanowires by thermal evaporation method for gas sensor application. Journal of Alloys and Compounds 708; 470-475,(2017).
  • [17] )Wu Y., Joshi N., Zhao S., Long H., Zhou L., Mag G., Peng B., Oliveira Jr O. N., Zettle A., Lin L.,NO2 gas sensors based on CVD tungsten diselenide monolayer.Applied Surface Science 529; 147110,(2020).
  • [18] Karaduman I., Corlu T., Yıldırım M. A., Ates A., Acar S., Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method. Journal of Electronıc Materıals, 46;7.,(2017).
  • [19] Karaduman Er I. , Nurtayeva T. , Sbeta M. , Cagirtekin A. O. , Acar S. , Yildiz A.,Carbon monoxide gas sensing performance of ZnO:Al thin flms prepared using diferent solvent–stabilizer combinations. Journal of Materials Science: Materials in Electronics, 30:10560–10570,(2019).
  • [20] Zhao S., Shen Y., Zhou P. , Zhang J., Zhang W., Chen X. , Wei D., Fang P., Shen Y.,Highly selective NO2 sensor based on p-type nanocrystalline NiO thin films prepared by sol–gel dip coating, Ceramics International 44;753–759,(2018).
  • [21] Ozutok F., Karaduman I., Demırı S., Acar S., Influence of Different Aluminum Sources on the NH3 Gas-Sensing Properties of ZnO Thin Films. Journal of Electronıc Materıals, 47; 5,(2018).
  • [22] Özütok F., Demırı S., Nanoflower-Lıke Zno Fılms Prepared By Modıfıed Chemıcal Bath Deposıtıon: Synthesıs, Optıcal Propertıes And NO2 Gas Sensıng Mechanısm, Digest Journal of Nanomaterials and Biostructures, 12 (2) : 309-317,(2017).
  • [23] Tian Z. R., Voigt J. A., Liu J., Mckenzie B., Mcdermott M. J., Rodriguez M. A., Konishi H., Xu H.,Complex and oriented ZnO nanostructures, Nature Materials, 2: 821-826,(2003).
  • [24] Khallaf H., Chai G., Lupan O., Heinrich H., Park S., Schulte A., Chow L.,Investigation of chemical bath deposition of ZnO thin films using six different complexing agents, Journal of Physics D: Applied Physics, 42: 135304,(2009).
  • [25] Ristov M., Sinadinovski Gj., Grozdanov I., Mitreski M., Chemical deposition of ZnO films, Thin Solid Films, 149 (1) : 65-71,(1987).
  • [26] Kathalıngam A., Ambıka N., Kım M. R., Elanchezhıyan J., Chae Y. S., Rhee J. K., Chemical bath deposition and characterization of nanocrystalline ZnO thin films , Materials Science-Poland, 28: 2,(2010).
  • [27] Özütok F.,Sensör Uygulamaları İçin Metal Oksit İnce Filmlere Metal Ve/Veya Karbon Nanotüp Modifikasyonu İle Nanokompozitlerin Eldesi, ÇÖMÜ, Fen Bilimleri Enstitüsü, Doktora Tezi,90s, Çanakkale(2016).
  • [28] Zhang J., Zhang L., Leng D., Ma F., Zhang Z., Zhang Y., Wang W., Liang Q., Gao J., Lu H., Nanoscale Pd catalysts decorated WO3–SnO2 heterojunction nanotubes for highly sensitive and selective acetone sensing, Sensors & Actuators: B. Chemical, 306: 127575,(2020).
  • [29] Han D.,Sol-gel autocombustion synthesis of zinc oxide foam decorated with holes and its use as acetic acid gas sensor at sub-ppm level, Ceramics International,46(3) : 3304-3310,(2020).
  • [30] Molavi R., Sheikhi M.H.,Facile wet chemical synthesis of Al doped CuO nanoleaves for carbon monoxide gas sensor applications, Materials Science in Semiconductor Processing, 106: 104767,(2020).
  • [31] Zhang C., Chen X.-l., Geng X.-H., Tian C.-S., Huang Q., Zhao Y., Zhang X.-D.,Temperature-dependent growth and properties of W-doped ZnO thin films deposited by reactive magnetron sputtering, Applied Surface Science ,274; 371–377,(2013).
  • [32] Chen Y., Hu Y., Zhang X., Hu K., Tong F., Lao Z., Shuai W., Investigation of the properties of W-doped ZnO thin films with modulation power deposition by RF magnetron sputtering, J Mater Sci: Mater Electron, 28:5498–5503,(2017).
  • [33] Ngom B.D., Chaker M., Manyala N., Lo B., Maaza M.,. Bey A.C.,Temperature-dependent growth mode of W-doped ZnO nanostructures. Applied Surface Science 257; 6226–6232,(2011).
  • [34] Çolak H. , Karaköse E.,Synthesis and characterization of different dopant (Ge, Nd, W)-doped ZnO nanorods and their CO2 gas sensing applications, Sensors and Actuators: B. Chemical 296; 126629,(2019).
  • [35] Adhyapakn P.V., Meshram S. P., Pawar A.A., Amalnerkar D.P., Mulik U.P., Mullan I.S. Synthesis of burger/donut like V and W doped ZnO and study of their optical and gas sensing properties, Ceramics International, 40: 12105–12115,(2014).
  • [36] Ngom B.D., Sakho O., Manyala N., Kana J.B., Mlungisi N.,Guerbous L., Fasasi A.Y., Maaza M., Beye A.C.,Structural, morphological and photoluminescence properties of W-doped ZnO nanostructures, Applied Surface Science, 255: 7314–7318,(2009).
  • [37] Colak H., Karakose E.,Synthesis and characterization of different dopant (Ge, Nd, W)-doped ZnO nanorods and their CO2 gas sensing applications, Sensors & Actuators: B. Chemical ,296: 126629,(2019).
  • [38] Huber S., Mardare C. C., Kleber C., Hassel A.W.,Structural, Electrical, and Optical Effects of Metal Doping on ZnO Thin Films, Phys. Status Solidi A, 216, 1800942,(2019).
  • [39] Huber S., Mardare C.C., Mardare A.I., Kleber C., Hassel A.W.,Strong Volta potential change in doped zinc oxide as a photoresponse to UV irradiation, RSC Advances, 61,(2019).
  • [40] Chu J., Peng X.Y., Dasari K., Palai R., Feng P., The shift of optical band gap in W-doped ZnO with oxygen pressure and doping level, Materials Research Bulletin 54; 73–77,(2014).
  • [41] Kane A.O., Ndao C. B., Gueye E. H. O., Gaye M. B., Ndiaye N. M., Ngom I., Ngom B. D., Tall P. D., Beye A.C.,Morphological, Structural and Optical Properties of W Doped-ZnO Films Grown by Pulsed Laser Deposition onto Different Glass Substrates, American Journal of Nanomaterials, 4(1) : 20-26,(2016).
  • [42] Onofre Y.J., Catto A.C., Bernardini S., Fiorido T., Aguir K., Longo E., Mastelaro V.R., da Silva L.F., de Godoy M.P.F.,Highly selective ozone gas sensor based on nanocrystalline Zn0.95Co0.05O thin film obtained via spray pyrolysis technique, Applied Surface Science, 478 : 347–354,(2019).
  • [43] Bai S., Tong W., Tian Y.,Fu H.,Zhao Y.,Shu X., Luo R., Li D., Chen A.,Facile synthesis of Pd-doped ZnSnO3 hierarchical microspheres for enhancing sensing properties of formaldehyde, Journal of Material Science, 54(3) : 2025–2036,(2019).
  • [44] Lin, C.-Y., Chen, J.-G., Feng, W.-Y., Lin, C.-W., Huang, J.-W., Tunney, J. J., Ho, K.-C.,Using a TiO2/ZnO double-layer film for improving the sensing performance of ZnO based NO gas sensor. Sensors and Actuators: B. Chemical, 157(2) : 361–367,(2011).
  • [45] Hastir A., Kohli N., Singh R.C., Comparative study on gas sensing properties of rare earth (Tb, Dy and Er) doped ZnO sensor,Journal of Physics and Chemistry of Solids, 105: 23-34,(2017).
  • [46] Lee J.-S. , Jeong D.-W., Byun Y. T.,Porphyrin nanofiber/single-walled carbon nanotube nanocomposite-based sensors for monitoring hydrogen peroxide vapor,Sensors and Actuators: B. Chemical, 306: 127518,(2020).
  • [47] Li Z., Yan S., Wu Z., Li H., Wang J., Shen W., Wang Z., Fu Y., Hydrogen gas sensor based on mesoporous In2O3 with fast response/recovery and ppb level detection limit, International Journal Of Hydrogen Energy, 43: 22746-22755,(2018).
  • [48] Sett D., Basak D.,Highly Enhanced H2 gas sensing characteristics of Co:ZnO nanorods and its mechanism, Sensors and Actuators: B. Chemical, 243: 475-483,(2017).
  • [49] Kim J.-H. , Mirzaei A., Kim H. W., Wu P., Kim S. S.,Design of supersensitive and selective ZnO-nanofiber-based sensors for H2 gas sensing by electron-beam irradiation, Sensors and Actuators: B. Chemical, 293: 210–223,(2019).
  • [50] Kumar M. , Bhatt V., Kumar A., Yun J.-H.,Nano lily-buds garden like ZnO nanostructures based gas sensor for H2 detection, Materials Letters, 240: 13–16,(2019).
  • [51] Drmosh Q., Yamani Z., Hossain M., Hydrogen gas sensing performance of low partial oxygen-mediated nanostructured zinc oxide thin film, Sensors and Actuators: B. Chemical, 248: 868–877,(2017).
  • [52] Mondal B., Basumatari B., Das J., Roychaudhury C., Saha H., Mukherjee N., ZnO– SnO2 based composite type gas sensor for selective hydrogen sensing, Sensors and Actuators: B. Chemical, 194: 389–396,(2014).
  • [53] Yang X.H., Wang W., Xiong J.L., Chen L., Ma Y., ZnO:Cd nanorods hydrogen sensor with low operating temperature,International Journal of Hydrogen Energy, 40: 12604–12609,(2015).
  • [54] Sun Z.P., Liu L., Zhang L., Jia D.Z.,Rapid synthesis of ZnO nano-rods by one-step room-temperature, solid-state reaction and their gas-sensing properties, Nanotechnology, 17: 2266- 2270,(2006).
  • [55] Bie L.J., Yan X.N., Yin J., Duan Y.Q., Yuan Z.H., Nano pillar ZnO gas sensor for hydrogen and ethanol, Sensors and Actuators: B. Chemical, 126: 604-608,(2007).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ