Düşey düz bir levhanın periyodik salınımlarının ısı transferine etkisi

Bu çalışmada, düşey düz bir levhanın periyodik salınımlarının ısı transferi üzerindeki etkisi deneysel ve sayısal olarak incelenmiştir. Deney sistemi, içinde deneysel modelin hareket ettiği şeffaf bir muhafazayı, modelin salınım hareketini üreten volan-motor sistemini, güç kaynağını, veri toplama sistemini ve bilgisayarı içerir. Deneysel model, üzerine termoelemanlar yerleştirilmiş iki bakır levha ve levhalar arasına yerleştirilmiş Kapton ısıtıcılardan oluşur. Çalışmada, levhanın yüzeyine uygulanan ısı akısı (q″), Womersley sayısı (Wo) ve boyutsuz salınım genliği (Ao) değiştirilmiş ve bu parametrelerin ısı transferi üzerindeki etkisi analiz edilmiştir. Ayrıca, çalışma deneysel verilere dayalı kontrol hacim tabanlı bir HAD çözücüsü kullanılarak sayısal olarak çözülmüştür. Sayısal sonuçlar, deneysel sonuçlarla karşılaştırılmıştır. Salınım genliği ve frekansının ısı transferine etkisini göstermek için levha yüzeyinde anlık hız ve sıcaklık görüntüleri elde edilmiştir. Sayısal ve deneysel sonuçlar, ısı transferinin salınım parametrelerinden önemli derecede etkilendiğini ve salınım genliği ve frekansının artması ile arttığını göstermiştir.

Effect on Heat Transfer of Periodic Oscillations of a Vertical Flat Plate

In this study, effects on heat transfer of periodic oscillation of a vertical flat plate are experimentally and numerically investigated. The experimental setup includes a transparent enclosure hosting a moving experimental model, flywheel-motor assembly generating the oscillating movement of the model, power supply, data logger and personal computer. The experimental model comprises two copper plates with attached thermocouples and Kapton heaters placed between the plates. In the study, heat flux applied to surface of the plates (q″), the Womersley number (Wo) and dimensionless oscillation amplitude (Ao) are varied and the effect of these parameters on the heat transfer is analysed. Furthermore, the study is numerically solved using a control-volume based CFD solver based on experimental data. The numerical results are compared with the experimental results. Instantaneous velocity and temperature profiles of the plate are obtained to explain the heat transfer mechanism. The numerical and experimental results are shown heat transfer is significantly affected by oscillation parameters and the heat transfer increases with the increase in both oscillation amplitude and frequency.

___

  • [1] Chida K., and Katto Y., “Conjugate heat transfer of continuously moving surfaces”, Int. J. Heat Mass Transfer, 19: 461–470, (1976).
  • [2] Chamkha, A. J., Takhar, H. S., and Nath, G., “Mixed convection flow over a vertical plate with localized heating (cooling), magnetic field and suction (injection)”, Heat and Mass Transfer, 40: 835–841, (2004).
  • [3] Cortell, R., “Flow and heat transfer in moving fluid over a moving flat surface”, Theor. Comput. Fluid Dyn., 21: 435–446, (2007).
  • [4] Zhang, H., “A Study of the Boundary Layer on a Continuous Moving Surface in Power Law Fluids”, University of Science and Technology Beijing, China, (2008).
  • [5] Bachok N., Ishak A., and Pop I., “Boundary layer flow of nanofluid over a moving surface in a flowing fluid”, Int. J. Therm. Sci., 49:1663–8, (2010).
  • [6] Rana P., and Bhargava R., “Numerical study of heat transfer enhancement in mixed convection flow along a vertical plate with heat source/sink utilizing nanofluids”, Commun Nonlinear Sci Numer Simulat, 16: 4318– 4334, (2011).
  • [7] Dogan M., and Sivrioglu M., “Experimental and numerical investigation of clearance gap effects on laminar mixed convection heat transfer from fin array in a horizontal channel-A conjugate analysis”, Appl. Therm. Eng., 40: 102–113, (2012).
  • [8] Taji S.G., Parishwad G.V., and Sane N.K., “Enhanced performance of horizontal rectangular fin array heat sink using assisting mode of mixed convection”, Int. Journal of Heat and Mass Transfer 72: 250–259, (2014).
  • [9] Khonakdar D.R., and Raveshi M.R., “Mixed convection on a vertical plate in supercritical fluids byselecting the best equation of state”, J. of Supercritical Fluids, 107: 549–559, (2016).
  • [10] Chen T.S., and Strobel, F.A., “Buoyancy effects on heat and mass transfer ın boundary layer on a contınuous, movıng horızontal plate”, Journal Numerical Heat Transfer, 3: (1), 115-130, (1980).
  • [11] Calmidi V.V., and Mahajan R.L., “Mixed convection over a heated horizontal surface in a partial enclosure”, Int. Journal of Heat and Fluid Flow, 19: 358-367, (1998).
  • [12] Moutsoglou A., and Chen T.S., “Buoyancy effects in a boundary layers on inclined, continuous, moving sheets”, Journal of Heat Transfer, 102: 371-372, (1980).
  • [13] Chamkha A.J., Takhar H.S., and Nath G., “Effect of buoyancy force on the flow and heat transfer over a continuous moving vertical or inclined surface”, Int. Journal of Thermal Sciences, 40: 825-833, (2001).
  • [14] Souza J.A., Vargas J.V.C., and Bianchi M.V.A, “Friction and heat transfer for inclined surfaces in relative motion to an air stream under buoyancy effect”, Int. Journal of Heat and Fluid Flow, 24: 713-725, (2003).
  • [15] Ramachandran N., Chen T.S., and Armaly B.F., “Mixed convection from vertical and inclined moving sheets in a parallel free stream”, Journal of Thermophysics and Heat Transfer, 1(3): 274-281, (1987).
  • [16] Lin H.T., and Hoh H.L., “Mixed convection from an isothermal vertical plate moving in a parallel or reversely to a free stream”, Heat and Mass Transfer, 32: 441-445, (1997).
  • [17] Pantokratoras A., “Opposing mixed convection along vertical isothermal moving bodies”, Int. Journal of Heat and Fluid Flow, 25: 692-696, (2004).
  • [18] Subhashini S.V., and Sumathi R., “Dual solutions of a mixed convection flow of nanofluids over a moving vertical plate”, Int. Journal of Heat and Mass Transfer, 71: 117–124, (2014).
  • [19] Khalid A., Khan I., and Shafie. S., “Heat transfer in free convection flow of micropolar fluids over an oscillating vertical plate”, Malaysian Journal of Fundamental and Applied Sciences, 13(4): 654-658, (2017).
  • [20] Pradhan B., Das S.S., Paul A.K., and Dash R.C., “Unsteady Free Convection Flow of a Viscous Incompressible Polar Fluid past a Semi Infinite Vertical Porous Moving Plate”, Int. Journal of Applied Engineering Research, 12(21): 10958-10963, (2017).
  • [21] Koffi M., Andreopoulos Y., and Jiji L., “Heat transfer enhancement by induced vortices in the vicinity of a rotationally oscillating heated plate”, Int. J. Heat and Mass Transfer, 112: 862-875, (2017).
  • [22] Ashafa S., Ahmed A.A., and Sakir A.A., “Analytical Solution of the Effect of MHD Inclination and Unsteady Heat Transfer in a Laminar, Transition and Turbulent Flow of a Basic Gaseous Micro-Flow past a Vertically Moving Oscillating Plate”, American Journal of Engineering & Natural Sciences (AJENS), 1(2): 30-35, (2017).
  • [23] Ellahi R., Alamri S.Z, Basit A., and Majeed A., “Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation”, Journal of Taibah University for Science, 12(4): 476-482, (2018).
  • [24] Prasad K.K., and Ramanathan V., “Heat transfer by free convection from a longitudinally vibrating vertical plate”, Int. J. Heat Mass Transfer, 15: 1213-1223, (1792).
  • [25] Zhang X.R., Maruyama S., and Sakai S., “Numerical Investigation of laminar natural convection on a heated vertical plate subjected to a periodic oscillation”, Int. J. Heat Mass Transfer, 47: 4439-4448, (2004).
  • [26] Goma H., and Al Taweel A.M, “Effect of oscillatory motion on heat transfer at vertical flat surfaces”, Int. Journal of Heat and Mass Transfer, 48: 1494–1504, (2005).
  • [27] Saeid, N.W., “Mixed convection flow along a vertical plate subjected to time-periodic surface temperature oscillations”, Int. J. Therm. Sci., 44: 531–539, (2005).
  • [28] Nobari M.R.H., and Naderan H., “A numerical study of flow past a cylinder with cross flow and inline oscillation”, Computers & Fluids, 35(4): 393-415, (2006).
  • [29] Ramesh G.K., Chamkha A.J., and Gireesha B.J., “Boundary layer flow past an inclined stationary/moving flat plate with convective boundary condition”, Afrika Matematika, 27(1): 87–95, (2016).
  • [30] Li G.N., Zheng Y.Q., and Hu G.L., “Heat transfer enhancement from a rectangular flat plate with constant heat flux in pulsating flows”, Experimental Heat Transfer, 27(2): 198-211, (2014).
  • [31] Krishna M.V., and Jyothi, K., “Hall effects on mhd rotating flow of a visco-elastic fluid through a porous medium over an ınfinite oscillating porous plate with heat source and chemical reaction”, Materials Today: Proceedings, 5: 367–380, (2018).
  • [32] Khan I., Shah N.A., Tassaddiq A., Mustapha N., and Kechi S.A., “Natural Convection heat transfer in an oscillating vertical plate”, PLoSONE, 13(1):1-14, (2018).
  • [33] Ghiasi A., Razavi S.E., Rouboa A. and Mahian O., “Numerical study on flow over a confined oscillating cylinder with a splitter plate”, Int. Journal of Numerical Methods for Heat & Fluid Flow, 29(5): 1629-1646, (2019)
  • [34] Sarhan A.R., Karim M.R., Kadhim Z.K., and Naser J., “Experimental investigation on the effect of vertical vibration on thermal performances of rectangular flat plate”, Experimental Thermal and Fluid Science, 101: 231-240, (2019).
  • [35] Lee S., Chiou J., and Cyue G., “Mixed convection in a square enclosure with a rotating flat plate”, Int. Journal of Heat and Mass Transfer, 131: 807-814, (2019).
  • [36] Kim Y.J., “Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction”, International Journal of Engineering Science, 38(8): 833-845, (2000).
  • [37] Holman, J.P., Experimental Methods for Engineers, McGraw-Hill, New York, (2001).
  • [38] ANSYS Inc., ANSYS Fluent user’s guide, (2018).
  • [39] Acrivos A., “Combined laminer free-and forcedconvection heat transfer in external flows”, AIChE J. 4, 285-289, (1958).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ