Döner Sürtünmeli Kaynak İşleminde Polipropilen Parçaların Birleşim Analizi ve Birleştirme Profilinin Geliştirilmesi

Plastik parçaların sökülemeyen birleştirmelerinde sürtünme kaynak, sürtünme-karıştırma kaynak, ultrasonik kaynak, kimyasal birleştirme, sıcak plaka kaynak gibi yöntemler kullanılmaktadır. Su arıtma cihazlarının filtre parçaların birleştirilmesinde çoğunlukla sürtünme kaynak yöntemlerinden döner sürtünme kaynağı kullanılmaktadır. Filtre parçalarının döner sürtünme kaynak sonrası iç kısımlarda yarı ergimiş yığılmalar oluşmaktadır. Bazı hassas filtrelerde iç kısımda oluşan yarı ergimiş yığılmalarda kopmalar sonucunda filtrelerin tıkanmasına sebep olmaktadır. Bu çalışmada filtre parçalarının iç kısımda oluşan yarı ergimiş yığılmayı hapsetmek için kaynak ağız tasarımının geliştirilmesi amaçlanmaktadır. Bu amaçla mevcut filtre parçalarının yarı ergimiş yığılma durumu ABAQUS programında (Lagrangian ve CEL (Coupled Eulerian Labrangian) yöntem) analiz/simülasyonlar yaparak yarı ergimiş yığılma durumu, termal analiz, stress, enerji verileri değerlendirilmiştir. Yarı ergimiş yığılma hapsedecek kaynak yapı tasarımı geliştirilerek, analizler tekrarlanmıştır. Elde edilen analizlerde; maksimum sıcaklığın 166,2 °C, kaynak sonrası ürün boyunda 1,98 mm kısalma olduğu ve 150 °C sıcaklığa 13,1 salisede ulaştığı bulunmuştur. Önerilen farklı kaynak ağızları çalışmalarından, N3 kaynak ağızının yarı ergiyik durumdaki hammaddeyi hapsetmesini daha iyi başarım sergilediği tespit edilmiştir.

Joining Analysis of Polypropylene Parts in Rotary Friction Welding Process and Developing of Joints Profile

Various welding methods are used to produce non-detachable joints of plastic parts. These are friction welding (FW), friction-stir welding (FSW), ultrasonic welding, chemical bonding, and hot plate welding. Rotary friction welding (RFW) method, which is one of the FW methods, is generally used in joining the filter parts of water treatment devices. After RFW processes, semi-melted plastic accumulations tend to occur on the interior surfaces of the filter parts. In some cases, particles broken off from these accumulations can often clog sensitive filters. In this study, it is aimed to develop a welding joint profile design that can be used to confine the semi-melted agglomeration formed in the interior surfaces of the filter parts. For this purpose, the semi-melted agglomeration in the filter parts is analyzed/simulated utilizing the ABAQUS program by using Lagrangian and CEL (Coupled Eulerian-Lagrangian) methods, and their thermal analysis, stress, and energy data are evaluated. The analysis is repeated until the optimal welding structure design to confine the semi-melted agglomeration is developed. As a result of the analyses, it was determined that the maximum temperature reached is 166.2 °C, there was a 1.98 mm shortening in the length of the product after welding, and the temperature of 150 °C was reached in 13.1 milliseconds. From the several joint profile designs proposed, it was determined that the N3 joint profile design accommodates the semi-melt raw material better than the others.

___

  • [1] Ertuğ, A., “Friction Welding”, Engineer and Mechanical Journal, 21 (241) (1997).
  • [2] Tensi, H.M., Welz,w. Und Schwlam, M., “Temperaturen beim Reibschweipen von Aluminiumwerkstoffen”, München. 58, 515-517, (1982).
  • [3] G·runauer, H, Gürleyik, M.Y., “Friction Welding of Casted Parts”, Journal of Engineering and Machine, 30:357, (1989).
  • [4] Reiners, G. ve Kreye, H., Mikrostruktur und Mechanische Eigenshhaften von Reibschwebverbindungen aus Aluminuro und Stahl, Schwei Ben und Schneiden Hamburg, 40 H elf 3, (1988).
  • [5] Dede A., Soy A. and Aslanlar S., “Friction Welding Method”, SAU Journal Graduate School of Natural and Applied Engineering, 6(1):7-12, (2002).
  • [6] Li W., Shi S., Wang F., Zhang Z., Ma T., and Li J., “Numerical Simulation of Friction Welding Processes Based on ABAQUS Environment”, Journal of Engineering Science and Technology Review, 5 (3): 10-19, (2012).
  • [7] Kahraman B., “Joınıng Of 5754 Alumınıum Alloy Sheets, Used In The Automotıve Industry, Through Resıstance Spot Weldıng (Rsw) And Frıctıon Stır Spot Weldıng (Fssw)”, M. Sc. Thesis, Kocaeli University, Graduate School of Natural and Applied Engineering, (2009).
  • [8] Yan, Y., Shen, Y., Lei, H., Zhuang, J. and Li, J., “Friction lap welding AA6061 alloy and GFR nylon: Influence of welding parameters and groove features on joint morphology and mechanical property”, Journal of Materials Processing Tech., 278, 116458, (2020).
  • [9] Xu X., You G., Ding Y., Tong X., Zai L. And Liu Q., “Microstructure and mechanical properties of inertia friction welded joints between high-strength low-alloy steel and medium carbon steel”, Journal of Materials Processing Tech., 286, 116811, 1-14, (2020).
  • [10] Kumar, R., Singh, R., Ahuja, I.P.S., Penna, R., and Feo, L., “Weldability of thermoplastic materials for friction stir welding- A state of art review and future applications”, Composites Part B, 137:1–15, (2018).
  • [11] Ülker A., “Investıgatıon Of The Effects Of Weldıng Parameters On The Weld Strength In Frıctıon Stır Weldıng Of Hıgh Densıty Polyethylene Polymer Materıal And Optımızatıon Of Weldıng Parameters Wıth Taguchı Experımental Desıgn Method”, Ph. Thesis, Ege University, PhD. Thesis, (2015).
  • [12] Hamade, R.F., Andari, T.R., Ammouri, A. H. and Jawahir, I.S., “Rotary Friction Welding versus Fusion Butt Welding of Plastic Pipes – Feasibility and Energy Perspective”, Procedia Manufacturing, 33:693–700, (2019).
  • [13] Kasman Ş., Kahraman F., and Aydın A., “AA7075-T651 Assembled by Friction Stir Welding Method Investigation of the Effect of Different Mixer Pin Geometries of Aluminum Alloys on Welding Performance”, International Symposium on Innovative Technologies in Engineering and Science, (2016).
  • [14] ESA-PSS-03-210, “Adhesive bonding handbook for advanced structural materials”, issue 2, Section 2, Page:91-144. Noordwijk : Eur. Space Agency, - 1 v, (1995).
  • [15] L. D’Alvise, E. Massoni and S. Walle, “Finite element modeling of the inertia friction welding process between dissimilar materials”, J. Mater. Process. Tech., 125-126:387-391, (2002).
  • [16] Bennett C.J., Hyde T.H., Williams E.J., “Modeling and simulation of the inertia friction welding of shafts”, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 221(4):275–284, (2007).
  • [17] Çevik B., Gülenç B., and Durgutlu A., “The effects of critical welding parameters on tensile-shear properties of friction stir spot welded polyethylene”, Politeknik Dergisi, 20(4): 945-951, (2017).
  • [18] Polypropylene properties, http://www.ozgunplastik.gen.tr/Polipropilen.htm Date of access: 12.011.2020
  • [19] Schmicker D., Persson P. O. And Strackelijan J., “Implicit Geometry Meshing for the simulation of Rotary Friction Welding”, Journal of Computational Physics, 270:478-489, (2014).
  • [20] Singh R., Kumar R., Feo L., and Fraternali. F., “Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications”, Composite Part B., 101:77-89, (2016).
  • [21] Bindal T., Saxena R. K., Pandey S., “Analysis of joint overlap during friction spin welding of plastics”, Materials Today: Proceedings, 26:2798–2804, (2020).
  • [22] Sahu S. K., Mishra D., Mahto R. P., Sharma V. M., Pal S. K., Pal K., Banerjee S., Dash P., “Friction stir welding of polypropylene sheet”, Engineering Science and Technology, an International Journal, 21:245–254, (2018).
  • [23] Hamade R. F., Andari T. R., Ammouri A. H., and Jawahir I. S., “Rotary Friction Welding versus Fusion Butt Welding of Plastic Pipes – Feasibility and Energy Perspective”, Procedia Manufacturing, 33:693–700, (2019).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ