Doğrudan Tahrikli Eylemsiz Hapsedilme Füzyon içersinde Azalan Şok Yaklaşımı Boyunca Adiabat Şekillendirme

Bu çalışmada, iki aşamalı bir basınç darbesi ile tahrik edilen çift katmanlı küresel bir hedefin iç patlamalarını inceledik. Çalışmada ilk önce azalan şok yaklaşımı kullanılarak entropinin adiabatının, yerleşik teorik modellerle uyumlu basit bir güç yasasını izleyerek nasıl bir forma dönüştüğünü belirledik. Daha sonra üç farklı yakıt yoğunluğu koşulu için optimum adiabat parametresini doğrudan matematiksel yaklaşımla ,başlangıç yoğunluğu ne kadar yüksekse ve adiabat parametresinin bir o kadar azaldığını hesapladık. Sonuç olarak, nispeten hızlı ışınlama süreleri ve düşük lazer yoğunluğu için, tabakalı adiyabitik değerlerimizin literatürdeki çalışmalarla uyumlu olduğunu belirledik.

Adiabat Shaping in Direct Drive Inertial Confinement Fusion Implosions through the Decaying Shock Approximation

We consider the implosions of a double-layer spherical target driven by a two-step pressure pulse. By employing the decaying shock approximation the adiabat of the entropy is shaped, following a simple power law in agreement with the established theoretical models. Then we directly calculate the optimum adiabat parameter for three different fuel density states and find that the higher the initial density is, the lower adiabat parameter. Although the calculated adiabat values are close to ones obtained in previous investigations, they are achieved for relatively fast irradiation times and low laser intensity.

___

[1] Atzeni S. and Meyer-ter-Vehn J., “The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter”, International Series of Monographs on Physics, Clarendon, Oxford (2004).

[2] Lindl J. D., “Inertial Confinement Fusion : The Quest for Ignition and Energy Gain Using Indirect Drive”, AIP Press, Springer, New York (1998).

[3] Craxton R. S., Anderson K. S., Boehly T. R., Goncharov V. N., Harding D. R., Knauer J. P., McCrory R. L., McKenty P. W., Meyerhofer D. D., Myatt J. F., Schmitt A. J., Sethian J. D., Short R. W., Skupsky S., Theobald W., Kruer W. L., Tanaka K., Betti R., Collins T. J. B., Delettrez J. A., Hu S. X., Marozas J. A., Maximov A. V., Michel D. T.,Radha P. B., Regan S. P., Sangster T. C., Seka W., Solodov A. A., Soures J. M., Stoeckl C. and Zuegel J. D., “Direct-drive inertial confinement fusion: A review”, Physics of Plasmas, 22(11): 110501 1-153 (2015).

[4] Campbell E. M., Goncharov V. N., Sangster T. C., Regan S. P., Radha P. B., Betti R., Myatt J. F., Froula D. H., Rosenberg M. J., Igumenshchev I. V., Seka W., Solodov A. A., Maximov A. V., Marozas J. A., Collins T. J. B., Turnbull D., Marshall F. J., Shvydky A., Knauer J. P., McCrory R. L., Sefkow A. B., Hohenberger M., Michel P. A., Chapman T., Masse L., Goyon C., Ross S., Bates J. W., Karasik M., Oh J., Weaver J., Schmitt A. J., Obenschain K., Reyes S. and Van Wonterghem B., “Laser-direct-drive program: Promise, challenge, and path forward ”, Matter and Radiation at Extremes,2(2): 37-54 (2017).

[5] Bodner S. E., Colombant D. G., Gardner J. H., Lehmberg R. H., Obenschain S. P., Phillips L., Schmitt A. J., Sethian J. D., McCrory R. L., Seka W., Charles P. V., Knauer J. P., Afeyan B. B. and Powell H. T., “Direct-drive laser fusion: Status and prospects”, Physics of Plasmas, 5(5): 1901-1918 (1998). [7] Aldabbagh L.B.Y., Egelioglu F. and lkan M., “Single and double pass solar air heaters with wire mesh as packing bed”, Energy, 35: 3783–3787, (2010).

[6] Lord Rayleigh, “Scientific Papers”, Vol. II, Cambridge University Press, Cambridge (1900).

[7] Chandrasekhar S., “Hydrodynamic and Hydromagnetic Stability”, Clarendon, Oxford (1961).

[8] Ghasemizad A., Zarringhalam H. and Gholamzadeh L., “The Investigation of Rayleigh-Taylor Instability Growth Rate in Inertial Confinement Fusion”, J. Plasma Fusion Res. SERIES, 8: 1234-1238 (2009).

[9] Bodner S. E., “Rayleigh-Taylor Instability and Laser-Pellet Fusion”, Physical Review Letters, 33(13): 761-764 (1974).

[10] Kilkenny J. D., Glendinning S. G., Haan S. W., Hammel B. A., Lindl J. D., Munro D., Remington B. A., Weber S. V., Knauer J. P. and Verdon C. P., “A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion”, Physics of Plasmas, 1(5): 1379-1389 (1994).

[11] Sanz J., “Self-consistent Analytical Model of the Rayleigh-Taylor Instability in InertialConfinement Fusion”, Physical Review Letters, 73(20): 2700-2703 (1994).

[12] Betti R., Goncharov V. N., McCrory R. L., Sorotokin P. and Verdon C. P., “Self- consistent stability analysis of ablation fronts in inertial confinement fusion”, Physics of Plasmas, 3(5): 2122-2128 (1996).

[13] Goncharov V. N., Knauer J. P., McKenty P. W., Radha P. B., Sangster T. C., Skupsky S., Betti R., McCrory R. L. and Meyerhofer D. D., “Improved performance of direct- drive inertial confinement fusion target designs with adiabat shaping using an intensity picket”, Physics of Plasmas, 10(5): 1906-1918 (2003).

[14] Anderson K. and Betti R., “Theory of laser-induced adiabat shaping in inertial fusion implosions: The decaying shock ”, Physics of Plasmas, 10(11): 4448-4462 (2003).

[15] Betti R., Anderson K., Knauer J., Collins T. J. B., McCrory R. L., McKenty P. W. and Skupsky S., “ Theory of laser-induced adiabat shaping in inertial fusion implosions: The relaxation method ”, Physics of Plasmas, 12(4): 042703 1-18 (2005).

[16] Anderson K. and Betti R., “Laser-induced adiabat shaping by relaxation in inertial fusion implosions”, Physics of Plasmas, 11(1): 5-8 (2004).

[17] Betti R., Anderson K., Boehly T. R., Collins T. J. B., Craxton R. S., Delettrez J. A., Edgell D. H., Epstein R., Glebov V. Y., Goncharov V. N., Harding D. R., Keck R. L., Kelly J. H., Knauer J. P., Loucks S. J., Marozas J. A., Marshall F. J., Maximov A. V., Maywar D. N., McCrory R. L., McKenty P. W., Meyerhofer D. D., Myatt J., Radha P. B., Regan P. B., Ren C., Sangster T. C., Seka W., Skupsky S., Solodov A. A., Smalyuk V. A., Soures J. M., Stoeck C., Theobald W., Yaakobi B., Zhou C., Zuegel J. D., Frenge J. A., Li C. K., Petrasso R. D. and Seguin F. H., “Progress in hydrodynamics theory and experiments for direct-drive and fast ignition inertial confinement fusion”, Plasma Physics and Controlled Fusion, 48(12B): B153-B163 (2006).

[18] Baker K. L., Robey H. F., Milovich J. L., Jones O. S., Smalyuk V. A., Casey D. T., MacPhee A. G., Pak A., Celliers P. M., Clark D. S., Landen O. L., Peterson J. L., Berzk- Hopkins L. F., Weber C. R., Haan S. W., Doppner T. D., Dixit S., Giraldez E., Hamza A. V., Jancaitis K. S., Kroll J. J., Lafortune K. L., MacGowan B. J., Moody J. D., Nikroo A. and Widmayer C. C., “Adiabat-shaping in indirect drive inertial confinement fusion”, Physics of Plasmas, 22(5): 052702 1-9 (2015).

[19] Knauer J. P., Anderson K., Betti R., Collins T. J. B., Goncharov V. N., McKenty P. W., Meyerhofer D. D., Radha P. B., Regan S. P., Sangster T. C., Smalyuk V. A., Frenje J. A., Li C. K., Petrasso R. D. and Seguin F. H., “Improved target stability using picket pulses to increase and shape the ablator adiabat”, Physics of Plasmas, 12(5): 056306 1-6 (2005).

[20] Cheng B., Kwan T. J. T., Wang Y. M., Yi S. A., Batha S. H. and Wysocki F., “Ignition and pusher adiabat”, Plasma Physics and Controlled Fusion, 60(7): 074011 1-10 (2018).

[21] Piriz A. R. and Wouchuk J. G.,“Implosion of a two-layer shell driven by a shaped pressure pulse”, Physics of Fluids B: Plasma Physics, 3(10): 2889-2897 (1991).

[22] Collins T. J. B., Knauer J. P., Betti R., Boehly T. R., Delettrez J. A., Goncharov V. N., Meyerhofer D. D., McKenty P. W., Skupsky S. and Town R. P. J., “Reduction of the ablative Rayleigh-Taylor growth rate with Gaussian picket pulses”, Physics of Plasmas, 11(4): 1569 (2004).

[23] Zeldovich Y. B. and Raizer Y. P., “Physics of Shock Waves and High Temperature Hydrodynamic Phenomena”, Wallace Hayes, Academic, New York (1967).

[24] Boehly T. R., Vianello E., Miller J. E., Craxton R. S., Collins T. J. B., Goncharov V. N., Igumenshchev I. V., Meyerhofer D. D., Hicks D. G., Celliers P. M. and Collins G. W., “Shock-timing experiments using double-pulse laser irradiation”, Physics of Plasmas, 13(5): 056303 1-7 (2006).

[25] Goncharov V. N., Gotchev O. V., Vianello E., Boehly T. R., Knauer J. P., McKenty P. W., Radha P. B., Regan S. P., Sangster T. C., Skupsky S., Smalyuk V. A., Betti R., McCrory R. L., Meyerhofer D. D. and Cherfils-Clerouin C., “Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution”, Physics of Plasmas, 13(1): 012702 (2006).

[26] Whitham G. B., “Linear and Nonlinear Waves”, Wiley, New York (1974).

[27] Vincenti W. G. and Kruger C. H., “Introduction to Physical Gas Dynamics”, Wiley, New York (1965).

[28] Vold E. L., Joglekar A. S., Ortega M. I., Moll R., Fenn D. and Molvig K., “Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations”, Physics of Plasmas, 22(11): 112708 1-11 (2015).

___

Bibtex @araştırma makalesi { politeknik806704, journal = {Politeknik Dergisi}, eissn = {2147-9429}, address = {Gazi Üniversitesi Teknoloji Fakültesi 06500 Teknikokullar - ANKARA}, publisher = {Gazi Üniversitesi}, year = {2021}, volume = {24}, number = {3}, pages = {1063 - 1072}, doi = {10.2339/politeknik.806704}, title = {Adiabat Shaping in Direct Drive Inertial Confinement Fusion Implosions through the Decaying Shock Approximation}, key = {cite}, author = {Mohammadkhani, Samira and Ghasemizad, Abbas} }
APA Mohammadkhani, S. & Ghasemizad, A. (2021). Adiabat Shaping in Direct Drive Inertial Confinement Fusion Implosions through the Decaying Shock Approximation . Politeknik Dergisi , 24 (3) , 1063-1072 . DOI: 10.2339/politeknik.806704
MLA Mohammadkhani, S. , Ghasemizad, A. "Adiabat Shaping in Direct Drive Inertial Confinement Fusion Implosions through the Decaying Shock Approximation" . Politeknik Dergisi 24 (2021 ): 1063-1072 <
Chicago Mohammadkhani, S. , Ghasemizad, A. "Adiabat Shaping in Direct Drive Inertial Confinement Fusion Implosions through the Decaying Shock Approximation". Politeknik Dergisi 24 (2021 ): 1063-1072
RIS TY - JOUR T1 - Adiabat Shaping in Direct Drive Inertial Confinement Fusion Implosions through the Decaying Shock Approximation AU - Samira Mohammadkhani , Abbas Ghasemizad Y1 - 2021 PY - 2021 N1 - doi: 10.2339/politeknik.806704 DO - 10.2339/politeknik.806704 T2 - Politeknik Dergisi JF - Journal JO - JOR SP - 1063 EP - 1072 VL - 24 IS - 3 SN - -2147-9429 M3 - doi: 10.2339/politeknik.806704 UR - Y2 - 2020 ER -
EndNote %0 Politeknik Dergisi Adiabat Shaping in Direct Drive Inertial Confinement Fusion Implosions through the Decaying Shock Approximation %A Samira Mohammadkhani , Abbas Ghasemizad %T Adiabat Shaping in Direct Drive Inertial Confinement Fusion Implosions through the Decaying Shock Approximation %D 2021 %J Politeknik Dergisi %P -2147-9429 %V 24 %N 3 %R doi: 10.2339/politeknik.806704 %U 10.2339/politeknik.806704
ISNAD Mohammadkhani, Samira , Ghasemizad, Abbas . "Adiabat Shaping in Direct Drive Inertial Confinement Fusion Implosions through the Decaying Shock Approximation". Politeknik Dergisi 24 / 3 (Eylül 2021): 1063-1072 .
AMA Mohammadkhani S. , Ghasemizad A. Adiabat Shaping in Direct Drive Inertial Confinement Fusion Implosions through the Decaying Shock Approximation. Politeknik Dergisi. 2021; 24(3): 1063-1072.
Vancouver Mohammadkhani S. , Ghasemizad A. Adiabat Shaping in Direct Drive Inertial Confinement Fusion Implosions through the Decaying Shock Approximation. Politeknik Dergisi. 2021; 24(3): 1063-1072.
IEEE S. Mohammadkhani ve A. Ghasemizad , "Adiabat Shaping in Direct Drive Inertial Confinement Fusion Implosions through the Decaying Shock Approximation", Politeknik Dergisi, c. 24, sayı. 3, ss. 1063-1072, Eyl. 2021, doi:10.2339/politeknik.806704