Doğru Akım Uygulanan Betonlarda Donatı Çapının Hızlandırılmış Korozyon Başlangıcına Etkisinin Araştırılması

Bu çalışmada 300 dozajlı, 15cm küp boyutundaki betonlara hızlandırılmış korozyon deneyi uygulanmıştır. Betonların orta noktalarına donatı çapları sırası ile ø12, ø14 ve ø16 olan donatılar yerleştirilmiştir. Üretilen betonlar kalıplardan çıkartıldıktan sonra 28 gün süre ile kür edilmiştir. Betonlarda hızlandırılmış korozyon testi yapabilmek için DC güç kaynağı vasıtası ile 30 V gerilim uygulanmıştır. Betonlara uygulanan akım ampermetre ile kaydedilmiş ve çeşitli karşılaştırmalar yapılmıştır. Beton içerisindeki donatı çapının artması ile betondaki korozyon şiddetinin azaldığı sonucuna ulaşılmıştır.

Investigation of the Impacts of Reinforcement Steel’s Diameters on Accelerated Corrosion Begining for the Concretes to which Direct Current Applied

In this study, accelerated corrosion test is applied to 300 dosaged concretes whose sizes are 15cm cube. Reinforcement steel diameters of ø12, ø14 and ø16, respectively, were inserted into the middle points of the concrete. The concrete produced was cured for 28 days after being removed from the molds. In order to achive accelerated corrosion test, 30 V stress intensity is applied by DC power supply. The currents passing through the concretes were recorded with the help of ampere meter and various comparisons were made. It has been concluded that, the increase in the diameter of the reinforcement steel in the concrete can decrease the corrosion intensity of the concrete.

___

  • [1] Song H.W., Saraswathy V., “Corrosion monitoring of reinforced concrete structures – a review”, International Journal of Electrochemical Science, 2: 1-28, (2007).
  • [2] Elsener B., “Corrosion rate of steel in concrete-measurements beyond the tafel law”, Corrosion Science, 47: 3019–3033, (2005).
  • [3] Zhu W., François R., “Corrosion of the reinforcement and its influence on the residual structural performance of a 26-year-old corroded RC beam”, Construction and Building Materials, 51: 461–472, (2014).
  • [4] Bicer K., Yalciner H., Balkıs A.P., Kumbasaroglu A., “Effect of corrosion on flexural strength of reinforced concrete beams with polypropylene fibers”, Construction and Building Materials, 185: 574–588, (2018).
  • [5] Cavaco E.S., Neves L.A.C., Casas, J.R., “Reliability-based approach to the robustness of corroded reinforced concrete structures”, Struct. Conc. 18 (2): 316–325, (2017).
  • [6] Cao C., Cheung M.M.S “Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures”, Construction and Building Materials, 51: 75–81, (2014).
  • [7] Bazán A.M., Gálvez J.C, Reyes E., Galé-Lamuela D., “Study of the rust penetration and circumferential stresses in reinforced concrete at early stages of an accelerated corrosion test by means of combined SEM, EDS and strain gauges”, Construction and Building Materials, 184: 655–667, (2018).
  • [8] Jinwei C., Chuanqing F., Hailong Y., Xianyu Jin., “Corrosion of steel embedded in mortar and concrete under different electrolytic accelerated corrosion methods” Construction and Building Materials 241 (11): 71-79, (2020).
  • [9] Fu C., Jin N., Ye H., Jin X., Dai W., “Corrosion characteristics of a 4-year naturally corroded reinforced concrete beam with load-induced transverse cracks”, Corrosion Science, 117: 11–23, (2017).
  • [10] Poupard O., L’Hostis V., Catinaud S., Petre-Lazar I., “Corrosion damage diagnosis of a reinforced concrete beam after 40 years natural exposure in marine environment”, Cem. Concr. Res., 36: 504–520, (2006).
  • [11] Andrade C., Keddam M., Nóvoa X.R., Pérez, M.C., Rangel, C.M., Takenouti H., “Electrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry”, Electrochim. Acta 46: 3905–3912, (2001).
  • [12] Ye H., Jin N., Fu C., Jin X., ”Rust distribution and corrosion-induced cracking patterns of corner-located rebar in concrete cover”, Construction and Building Materials, 156: 684–691, (2017).
  • [13] Zhang R., Castel A., François R., “Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process”, Cem. Concr. Res., 40: 415–425, (2010).
  • [14] Ye H., Fu C., Jin, N., Jin, X., “Performance of reinforced concrete beams corroded under sustained service loads: a comparative study of two accelerated corrosion techniques”, Construction and Building Materials, 162: 286–297, (2018).
  • [15] Yuan Y., Ji Y., Shah S.P., “Comparison of two accelerated corrosion techniques for concrete structures”, ACI Struct. J. 104: 344, (2007).
  • [16] Lu Y., Hu J., Li S., Tang W., “Active and passive protection of steel reinforcement in concrete column using carbon fibre reinforced polymer against corrosion”, Electrochim. Acta 278: 124–136, (2018).
  • [17] Wang X., Zhang X.G., Dai H., “Determination of residual cross-sectional areas of corroded bars in reinforced concrete structures using easy-to-measure variables”, Construction and Building Materials, 38: 846–853, (2013).
  • [18] Bazán A.M., Gálvez J.C., Reyes E., Galé-Lamuela D., “Study of the rust penetration and circumferential stresses in reinforced concrete at early stages of an accelerated corrosion test by means of combined SEM, EDS and strain gauges”, Construction and Building Materials, 184: 655–667, (2018).
  • [19] El Maaddawy T.A., Soudki K.A., “Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete”, J. Mater. Civ. Eng, 15: 41–47, (2003).
  • [20] Imperatore S., Leonardi A., Rinaldi Z., “Mechanical behaviour of corroded rebars in reinforced concrete elements”, Lect. Notes Appl. Comput. Mech, 61: 207–220, (2012).
  • [21] Xia J., Jin W., Li L., “Performance of corroded reinforced concrete columns under the action of eccentric loads”, J. Mater. Civ. Eng, 28: 4015087, (2016).
  • [22] Abosrra L., Ashour A.F., Youseffi M., “Corrosion of steel reinforcement in concrete of different compressive strengths”, Construction and Building Materials, 25: 3915–3925, (2011).
  • [23] Lu Y., Hu J., Li S., Tang W., “Active and passive protection of steel reinforcement in concrete column using carbon fibre reinforced polymer against corrosion”, Electrochim. Acta, 278: 124–136, (2018).
  • [24] Almusallam A.A., “Effect of degree of corrosion on the properties of reinforcing steel bars”, Construction and Building Materials, 15: 361–368, (2001).
  • [25] Hocaoğlu İ., Uygunoğlu T., “Alternatif gerilim uygulanan betonlarda s/ç oranının ve hiperakışkanlaştırıcı oranının priz bitiş süresi ve basınç dayanımına etkilerinin araştırılması”, Journal of Polytechnic, ISSN: 1302-0900 (Print), ISSN: 2147-9429 (Online), (2019).
  • [26] Topçu İ.B., Uygunoğlu T., Hocaoğlu İ., “Yüksek Fırın Cüruf Katkılı Çimento Pastalarının Elektriksel Özdirençlerinin Araştırılması”, Journal of Polytechnic, 21 (2): 257 – 264, (2018).
  • [27] TS EN 197-1, “Çimento- Bölüm 1: Genel çimentolar- Bileşim, özellikler ve uygunluk kriterleri”, Türk Standartları Enstitüsü, Ankara, (2012).
  • [28] Türkiye bina deprem yönetmeliği, 18 Mart 2018 tarihli ve 30364 sayılı mükerrer Resmi Gazete, Afet ve Acil Yönetimi Başkanlığı, Ankara, (2018.)
  • [29] TS 708, “Beton çelik çubukları”, Türk Standartları Enstitüsü, Ankara, Mart (1996).
  • [30] TS 708, Çelik-Betonarme için donatı çeliği, Türk Standartları Enstitüsü, Ankara, (2010).
  • [31] Topçu İ.B., Boğa A.R., “Çimento Tipinin Donatı Korozyonuna Etkisi”, 7. Ulusal Beton Kongresi, İstanbul, 301-310, (2007).
  • [32] Boğa A.R., “Yüksek Fırın Cürufu ve Korozyon İnhibitörü Kullanımının Beton İçerisindeki Donat Korozyonuna ve Beton Özeliklerine Etkileri”, Doktora Tezi, ESOGÜ, İnşaat Mühendisliği Anabilim Dalı, (2010).
  • [33] Hocaoğlu İ., Topçu İ.B., “Effect of DC Current and NaCl Ratio on Accelerated Corrosion at Different Diameter of Steels”, BSEU Journal of Engıneerıng Research and Technology, 1: 18-23, (2020).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ