Dijital İnsan Modelleme Tabanlı Ergonomik Analiz: Ortaokul Öğrencileri İçin Ayarlanabilir Okul Mobilyası Tasarımı

Öğrencilerin akademik başarılarını ve sağlıklarını etkileyen bir çok neden vardır. Bu nedenlerden biri de okul mobilyalarının ergonomik olmamasıdır. Bu çalışmada, öğrenilerin antropometrik özelliklerine uygun, yüksekliği ve eğimi ayarlanabilen okul mobilyaları ile tasarım odaklı derslerde çizim yaparken ideal duruşlarını koruyabilmeleri amaçlanmıştır. Öğrenci mobilyası öğrencilerden elde edilen antropometrik veriler doğrultusunda tasarlanmıştır.  Yüksekliği ayarlanabilir oturak öğrencilerin bacak boylarına göre üç farklı yükseklikte, tasarlanan masa ise eğimli olarak kullanılabilmektedir. Mobilyaların ergonomik analizi RULA-Üst Ekstremite Analizi ile gerçekleştirilmiştir. Analizlerde, elde edilen antropometrik verilere uygun olarak Dijital İnsan Modelleri (DHM) kullanılmıştır. Modeller yoluyla yapılan analizler sayesinde risk değerlendirmeleri yapılmıştır. RULA analizinde ergonomik konumda pozisyonlanan uzuvlar yeşilden kırmızıya doğru renklendirilmiştir. Analizler neticesinde, tasarlanan mobilyanın, bilinen okul mobilyalarına oranla daha iyi RULA skoru elde ettiği görülmüştür.  

Ergonomic Analysis Based on Digital Human Modelling: Adjustable School Furniture Design for Secondary School Students

There are many reasons that affect students' academic achievement and health. One of the reasons is that school furniture is not ergonomic. Designed in this paper are student chairs and desks, which are height adjustable and inclinable, are suitable for the anthropometric characteristics of the students and which would ensure that students maintain their ideal body postures in design oriented classes, especially while making drawings. The student desk and the chair were designed in consideration of the anthropometric data obtained from the students. The height-adjustable seat can be used at three different heights according to the leg length of the students and the designed table can be used inclined. Ergonomically evaluation of the school furniture designed was carried out through RULA – Rapid Upper Limb Analysis. During the tests and the analyses, Digital Human Models (DHM) matching the anthropometric measures determined within the study were used. Risk assessments were conducted in this study with the help of the ergonomics analyses carried out with DHMs.  In the RULA analysis, the limbs positioned in the ergonomic position were colored from green to red. As a result of the analysis, it was seen that the designed furniture had a better RULA score than the known school furniture.

___

  • Ünal Ç., Çelikkaya T. “Yapılandırmacı yaklaşımın sosyal bilgiler öğretiminde başarı, tutum ve kalıcılığa etkisi (5. sınıf örneği)”, Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 13: 197-212, (2009).
  • Yeats B. “Factors that may influence the postural health of schoolchildren (K12)”, Work, 9: 45-55, (1997).
  • Açık E., Kayıhan H., Aran, OT. “Investegation of antropometric suitability of school furniture in primary schools-a pilot study”, Journal of Occupational Therapy and Rehabilitation, 2: 131-140, (2014).
  • Sarı Mİ, Şahin İ., Eldem C., Kiraz C., Şahin T. 2017. “A new ergonomic school furniture design for technology and design teaching”, 1st International Turkish World Engineering and Science Congress, Antalya, Turkey, 245-253, (2017).
  • Akın G., Gültekin T., Bektaş Y., Önal S., Tuncel E. “Sequence design for the university students”, DTCF Journal, 54: 269-286, (2017).
  • Bendak S., Al-Saleh K., Al-Khalidi A. “Ergonomic assessment of primary school furniture in united arab emirates”, Occupational Ergonomics, 11: 85–95, (2013).
  • Sigurdsson SO., Artnak M., Needham M., Wirth O., Silverman K. “Motivating ergonomic computer workstation setup: sometimes training is not enough”, International Journal of Occupational Safety and Ergonomics, 18: 27-33, (2012).
  • Burgess-Limerick R., Plooy A., Ankrum D. “The influence of computer display height on head and neck posture1”, International Journal Of İndustrial Ergonomics, 23: 171-179, (1999).
  • Taifa IW., Desai DA. “Anthropometric measurements for ergonomic design of students’ furniture in India”, Engineering Science and Technology, an International Journal, 20: 232-239, (2017).
  • Oyewole SA., Haight JM., Freivalds A. “The ergonomic design of classroom furniture/computer work station for first graders in the elementary school”, International Journal of Industrial Ergonomics, 40: 437-447, (2010).
  • Knight G., Noyes JAN. “Children's behaviour and the design of school furniture”, Ergonomics, 42: 747-760, (1999).
  • Castellucci HI., Arezes PM., Viviani CA. “Mismatch between classroom furniture and anthropometric measures in Chilean schools”, Applied ergonomics, 41: 563-568, (2010).
  • Castellucci HI., Arezes PM., Molenbroek JFM. “Applying different equations to evaluate the level of mismatch between students and school furniture”, Applied ergonomics, 45: 1123-1132, (2014).
  • Castellucci HI., Arezes PM., Molenbroek JFM. “Equations for defining the mismatch between students and school furniture: A systematic review”, International Journal of Industrial Ergonomics, 48: 117-126, (2015).
  • Agha SR., Alnahhal MJ. “Neural network and multiple linear regression to predict school children dimensions for ergonomic school furniture design”, Applied ergonomics, 43: 979-984, (2012)..
  • Castellucci HI., Arezes PM., Molenbroek JFM., De Bruin R., Viviani C. “The influence of school furniture on students’ performance and physical responses: results of a systematic review”, Ergonomics, 60: 93-110, (2017).
  • Saarni LA., Rimpelä AH., Nummi TH., Kaukiainen A., Salminen JJ., Nygård CH. “Do ergonomically designed school workstations decrease musculoskeletal symptoms in children? A 26-month prospective follow-up study”, Applied ergonomics, 40: 491-499, (2009).
  • Hoque ASM., Parvez MS., Halder PK., Szecsi T. “Ergonomic design of classroom furniture for university students of Bangladesh”, Journal of Industrial and Production Engineering, 31, 239-252, (2014).
  • ISO 5970. “Furniture: chairs and tables for educational ınstitutions: functional sizes”, International Organization for Standardization (ISO), (1979).
  • Lueder R. “The ergonomics payoff: Designing the electronic Office”, Nichols Pub Co, New York, (1986).
  • Jung HS. “A prototype of an adjustable table and an adjustable chair for schools”, International Journal of Industrial Ergonomics, 35: 955-969, (2005).
  • Url: Kaslar, Çalışmaları ve Antropometri. http://enm.blogcu.com/kaslar-calismalari-ve-antropometri-5/2661306, (accessed 23 July 2017).
  • Güleç E., Akın G., Sağır M., Koca Özer B., Gültekin T., Bektaş Y. “Anadolu insanının antropometrik boyutları: 2005 yılı Türkiye antropometri anketi genel sonuçları”, Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 49, 187-201, (2009).
  • Dizdar EN. “Ergonomik iş istasyonu tasarımında ilk adım ‘Antropometri’”, Mesleki Sağlık ve Güvenlik Dergisi(MSG), 4: 38-44, (2003).
  • Güler Ç., Vaizoğlu SA., Tekbaş ÖF. “Temel ergonomi kavramları”, Mesleki Sağlık ve Güvenlik Dergisi(MSG), 1: 22-26, (2000).
  • Özok AF. “Ergonomik açıdan çalışma yeri düzenleme ve antropometri”, Türk Metal Sendikası, Ankara, (1988).
  • Şimşek M. “Mühendislikte ergonomik faktörler”, Marmara Üniversitesi Yayınları, İstanbul, (1994).
  • Hertzberg HTE. “Dynamic anthropometry of working positions”, Human Factors, 2: 147-155, (1960).
  • Eldem C., Şahin İ., Demir MT., Top N., Şahin T. “Araç bakım kanallarının dijital insan modelleri ile ergonomik analizi ve yeniden tasarımı”, Mühendislik Bilimleri Ve Tasarım Dergisi, 7(2): 386-392, (2019).
  • Eldem C., Top N., Şahin H. “Dijital insan modelleri kullanarak otomobil sürücüsü duruş pozisyonlarının ergonomik değerlendirilmesi üzerine bir çalışma”, Gazi Mühendislik Bilimleri Dergisi (GMDB), 5(1): 22-31, (2019).
  • RULA Employee Assessment Worksheet, Neese Consulting Inc., USA, (2004).
  • McAtamney L., Corlett EN. “RULA: a survey method for the investigation of work-related upper limb disorders”, Applied Ergonomics, 24: 91-99, (1993).
  • Demirel HO., Duffy VG. “Applications of digital human modeling in industry. In: V. G. Duffy (Ed.)”, Digitalhumanmodeling,HCII2007,LNCS4561, 824–832, Berlin, Heidelberg, (2007).
  • Faraway J., Reed MP. “Statistics for digital human motion modeling in ergonomics”, Technometrics, 49: 277-290, (2007).
  • Liang MA., Wei Zhang, Huanzhang FU, Yang GUO, Chablat D., Bennis F. “A framework for ınteractive work design based on digital work analysis and simulation”, Human Factors and Ergonomics in Manufacturing, 20: 339-352, (2010).
  • Dischinger Jr HC. “Digital Human Modeling”, National Aeronautics and Space Administration (NASA), USA, (2017).
  • Chaffin DB. “On simulating human reach motions for ergonomics analyses”, Human Factors and Ergonomics in Manufacturing, 12: 235–247, (2007).
  • Chaffin DB. “Human motion simulation for vehicle and workplace design”, Human Factors and Ergonomics in Manufacturing, 17: 475–484, (2007).
  • Naumann A., Roetting M. “Dijital human modelling for design and evaluation of human-machine systems”, MMI-Interaktiv, (2007).
  • Lämkull D., Hanson L., Örtengren R. “A comparative study of digital human modelling simulation results and their outcomes in reality: a case study within manual assembly of automobiles”, International Journal of Industrial Ergonomics, 39: 428-441, (2009).
  • Chaffin DB. “Improving digital human modelling for proactive ergonomics in design”, Ergonomics, 48: 478–491, (2005).