Deneysel ve Sonlu Elemanlar Yöntemleri 3D Baskılı Malzemenin Çeşitli Gözeneklilik ile Öngörülmesi

Bu makalede, belirli geometriye sahip modellerin elastik modülü ve akma dayanımı değerlendirilmiştir. Bunun için deneysel ve teorik çalışmalar yapılmıştır. Üretilen modeller, bir pres altında sıkıştırma testine tabi tutulmuş ve ANSYS programında ise analiz (FEA) edilmiştir. Elde edilen sonuçlar, mukavemet, süneklik, ve kilo kaybı açısından en uygun gözeneklilik yüzdesinin belirlenmesinde kullanılmıştır. Sonuçlar n kuvveti, süneklik ve ağırlık azaltmayı koruyan uygun gözeneklilik yüzdesini değerlendirmek için kullanılmıştır. Dayanıklılık, elastik ve plastik modül verimi, porozitenin artmasıyla azalmıştır. En önemli değişiklik elastik modülünde ortaya çıkmıştır.

Experimental and Finite Element Methods prediction of 3D printed material mechanical properties with various porosity

In this article, elastic modulus and yield strength of models with specific geometry are evaluated. Experimental and theoreticalstudies were carried out. Produced models were subjected to compression test under one press and analysis (FEA) in ANSYSprogram. The results were used to determine the most suitable porosity in terms of strength, ductility, and weight loss. The resultswere used to assess the percentage of proper porosity that protects the force, ductility and weight reduction. Durability, elastic andplastic module yield decreased with increasing porosity. The most important change occurred in the elastic modulus.

___

  • [1] Alaboodi, A. S., and S. Sivasankaran. "Experimental design and investigation on the mechanical behavior of novel 3D printed biocompatibility polycarbonate scaffolds for medical applications." Journal of Manufacturing Processes 35: 479-491, (2018).
  • [2] Shen, H., and L. C. Brinson. "Finite element modeling of porous titanium." International Journal of Solids and Structures 44(1): 320-335, (2007).
  • [3] N. Michailidis, F. Stergioudi, H. Omar, D. Tsipas, "FEM modeling of the response of porous Al in compression", Computational Materials Science 48: 282–286, (2010).
  • [4] Roman Voronov, Samuel VanGordon, Vassilios I. Sikavitsas, Dimitrios V. Papavassiliou, "Computational modeling of flow-induced shear stresses within 3D saltleached porous scaffolds imaged via micro-CT", Journal of Biomechanics 43: 1279–1286, (2010).
  • [5] Yan Zaretskiy, Sebastian Geiger, Ken Sorbie, Malte Förster, "Efficient flow and transport simulations in reconstructed 3D pore geometries", Advances in Water Resources 33: 1508–1516, (2010).
  • [6] Su A Park, Su Hee Lee, Wan Doo Kim, "Fabrication of porous polycaprolactone/ hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering", Bioprocess Biosyst Eng, 34: 505–513, (2011).
  • [7] L. Podshivalov, A. F.-Y., “3D hierarchical geometric modeling and multiscale FE analysis as a base for individualized medical diagnosis of bone structure”, Bone 48: 693–703, (2011).
  • [8] T. Guillén, Q.-H. Z.-J., “Compressive behaviour of bovine cancellous bone and bone analogous materials, microCT characterisation and FE analysis”, Journal of the Mechanical Behaviour of Biomedical Materials, 4: 1452–1461, (2011).
  • [9] Andrea Spaggiari, Noel O’Dowd, "The influence of void morphology and loading conditions on deformation and failure of porous polymers: A combined finite-element and analysis of variance study", Computational Materials Science 64: 41–46, (2012).
  • [10] Li-Mei Ren, M. T. “A comparative biomechanical study of bone ingrowth in two porous hydroxyapatite bioceramics”, Applied Surface Science, 262: 81-88, (2012).
  • [11] Kristopher Doll, Ani Ural, "Mechanical Evaluation of Hydroxyapatite Nanocomposites Using Finite Element Modeling", Journal of Engineering Materials and Technology, 135: 011007-1, (2013).
  • [12] Jumpol Paiboon, D.V. Griffiths, Jinsong Huang, Gordon A. Fenton, "Numerical analysis of effective elastic properties of geomaterials containing voids using 3D random fields and finite elements”, International Journal of Solids and Structures 50, 3233–3241, (2013).
  • [13] Mitra Asadi-Eydivand, Mehran Solati-Hashjin, Arghavan Farzad, Noor Azuan Abu Osman, "Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes", Robotics and ComputerIntegrated Manufacturing 37: 57–67, (2016).
  • [14] Ze Liu, Wen Chen, Josephine Carstensen, Jittisa Ketkaew, Rodrigo Miguel Ojeda Mota, James K. Guest, Jan Schroers, "3D metallic glass cellular structures", Acta Materialia 105: 35e43, (2016).
  • [15] O. B. Hassana, S. Guessasma, S. Belhabib, and H. Nouri, “Explaining the Difference Between Real Part and Virtual Design of 3D Printed Porous Polymer at the Microstructural Level”, Macromol. Mater. Eng., 301: 566–576, (2016).
  • [16] Sandipan Roy, Niloy Khutia, Debdulal Das, Mitun Das, Vamsi Krishna Balla, Amit Bandyopadhyay, Amit Roy Chowdhury, “Understanding compressive deformation behaviour of porous Ti using finite element analysis", Materials Science and Engineering C, 64: 436–443, (2016)