Deformation and Electrical Behaviours of Functionally Graded Piezoelectric Curved Sensors

A comprehensive analytical model is developed for a functionally graded piezoelectric (FGP) curved bar which is in a closed electrical circuit. Piezoelectric coefficient is assumed to vary in the radial direction according to a power law unlike the corresponding studies in the literature. This assumption constitutes one of the basic novelties of the present investigation. For the verification, the numerical results of the mathematical model for an FGP curved actuator are compared with those of a related study on a linear FGP curved bar in the literature. Next, the model is used to determine the deformation and electrical behaviours of an FGP curved sensor under a couple at its free end section. The presentation of the numerical results for the curved sensors is another novelty of the present study since the numerical results in the related studies in the literature were presented just for the actuators. Results are compared with bimorph piezoelectric curved sensors and the effect of the grading parameter on the mechanical and electrical fields is examined. Numerical results show that FGP curved sensor provides several advantages in terms of the mechanical behavior of the material, and the distribution and production of electric potential in the sensor are affected significantly with the variation of grading parameter.

Kapalı elektrik çevrimi içerisinde bulunan fonksiyonel derecelendirilmiş piezoelektrik (FDP) eğri eksenli kiriş için kapsamlı bir analitik model geliştirilmiştir. Literatürdeki ilgili çalışmaların aksine, piezoelektrik sabitinin radyal doğrultuda bir güç yasasına bağlı olarak değiştiği kabul edilmiştir. Bu kabul, çalışmanın temel orijinalitesinden birini oluşturmaktadır. FDP eğri eksenli bir eyleyici için modelin sayısal sonuçları, literatürdeki ilgili çalışmalar ile karşılaştırılarak, modelin sınanması sağlanmıştır. Ardından, model serbest ucundan eğilme momentine mağruz bırakılan FDP eğri eksenli sensörün mekanik ve elektrik alanını elde etmek için kullanılmıştır. Literatürdeki diğer çalışmalarda sadece eyleyiciler için sonuçlar sunulduğundan dolayı, sensör için sayısal sonuçların sunumu bu çalışmanın bir diğer orijinalliğini temsil etmektedir. Sonuçlar iki tabakalı (bimorph) piezoelektrik eğri eksenli sensör sonuçları ile karşılaştırılmış ve derecelendirme parametresinin mekanik ve elektrik alanındaki etkileri incelenmiştir. Sonuçlar göstermiştir ki, FDP eğri eksenli sensör, malzemenin mekanik davranışları açısından bir çok avantaj sergilemektedir. Elektrik potensiyelinin dağılımı ve üretimi ise derecelendirme parametresine bağlı olarak önemli ölçüde etkilenmiştir.

___

1. Tadigadapa S. and Mateti K., "Piezoelectric MEMS sensors: state-of-the-art and perspectives", Measurement Science and Technology, 20: 092001, (2009)

2. Tadigadapa S., "Piezoelectric microelectromechanical systems - challenges and opportunities", Procedia Engineering, 5: 468-471, (2010)

3. Sonti V.R. and Jones J.D., "Curved piezoactuator model for active vibration control of cylindrical shells" American Institute of Aeronautics and Astronautics Journal, 34: 1034-1040, (1996)

4. Kielczynski P., Pajewski W. and Szaiewski M., "Piezoelectric sensors for investigations of microstructures" Sensors and Actuators A, 65: 13-18, (1998)

5. Shen M.H., "Analysis of beams containing piezoelectric sensors and actuators", Smart Material Structures, 3: 439- 447, (1994)

6. Sirohi J. and Chopra I., "Fundamental Understanding of Piezoelectric Strain Sensors", Journal of Intelligent Material Systems and Structures, 11: 246-257, (2000)

7. Larson P.H. and Vinson J.R., "The use of piezoelectric materials in curved beams and rings Adaptive Structures and Material Systems", ASME AD, 35: 277-285, (1993).

8. Sun D. and Tong L., "Modeling and analysis of curved beams with debonded piezoelectric sensor/actuator patches", International Journal of Mechanical Sciences, 44: 1755- 1777, (2002)

9. Ryu D.H. and Wang K.W., "Characterization of surfacebonded piezoelectric actuators on curved beams", Smart Materials and Structures, 11: 377-388, (2002)

10. Sayyaadi H., Rahnama F., Farsangi M.A.A., "Energy harvesting via shallow cylindrical and spherical piezoelectric panels using higher order shear deformation theory", Composite Structures, 147: 155-167, (2016)

11. Zhai J., Zhao G., Shang L., "Integrated design optimization of structure and vibration control with piezoelectric curved shell actuators", Journal of Intelligent Material Systems and Structures, online first, doi:10.1177/1045389X16641203, (2016)

12. Dai L., Wang Y., "Design and simulation of curved sensors of PVDF for fetal heart rate monitoring", Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, 129-132, (2015)

13. Zhang T. and Shi Z.F., "Two-dimensional exact analysis for piezoelectric curved actuators", Journal of Micromechanics and Microengineering, 1: 640-647, (2006)

14. Shi L., Zhang Y., Dong W., "Research on the relationship between the curvature and the sensitivity of curved PVDF sensor", Proc. SPIE 9446, Ninth International Symposium on Precision Engineering Measurement and Instrumentation, 94461Y, doi:10.1117 /12.2180862, (2015)

15. Hauke T., Kouvatov A., Steinhausen R., Seifert W., Beige H., Langhammer H.T. and Abicht H.P., "Bending behavior of functionally gradient materials", Ferroelectrics, 238: 195-202, (2000)

16. Shi Z.F., "Bending behavior of piezoelectric curved actuator", Smart Materials and Structures, 14: 835-842, (2005)

17. Wang Q.M and Cross L.E., "Performance analysis of piezoelectric cantilever bending actuators", Ferroelectrics, 215: 187-213, (1998)

18. Erturk A. and Inman D.J., "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Materials and Structures, 18: 1-18, (2009)

19. Smits J.G., Dalke S.I. and Cooney T.K., "The constituent equations of piezoelectric bimorphs", Sensors and Actuators A, 28: 41-61, (1991)

20. Brissaud M., "Modelling of non-symmetric piezoelectric bimorphs", Journal of Micromechanics and Microengineering, 14: 1507-1518, (2004)

21. Brissaud M., Ledren S. and Gonnard P. "Modelling of a cantilever non-symmetric piezoelectric bimorph", Journal of Micromechanics and Microengineering, 13: 832-844, (2003)

22. Shijie Z., Ming C., Zongjun L., Hongtao W., "Sizedependent constituent equations of piezoelectric bimorphs", Composite Structures, 150: 1-7, (2016)

23. Xiang H.J., Shi Z.F., "Static analysis for multi-layered piezoelectric cantilevers", International Journal of Solids and Structures, 45: 113-128, (2008)

24. Weinberg M.S., "Working equations for piezoelectric actuators and sensors", Journal of Microelectromechanical Systems, 8: 529-533, (1999)

25. Shi Z.F., Xiang H.J. and Spencer Jr.B.F., "Exact analysis of multi-layer piezoelectric/composite cantilevers", Smart Materials and Structures, 15: 1447-1458, (2006)

26. Vel S.S. and Batra R.C., "Exact solution for the cylindrical bending of laminated plates with embedded piezoelectric shear actuators", Smart Materials and Structures, 10: 240- 251, (2001)

27. Shi Z.F. and Chen Y., "Functionally graded piezoelectric cantilever beam under load", Archive of Applied Mechanics, 74: 237-247, (2004)

28. Yu T. and Zhong Z., "Bending analysis of a functionally graded piezoelectric cantilever beam", Science in China Series G: Physics, Mechanics & Astronomy, 50: 97-108, (2007)

29. Chen Y. and Shi Z.F., "Exact Solutions of Functionally Gradient Piezothermoelastic Cantilevers and Parameter Identification", Journal of Intelligent Material Systems and Structures, 16: 531-539, (2005)

30. Huang D.J., Ding H.J. and Chen W.Q., "Piezoelasticity solutions for functionally graded piezoelectric beams", Smart Materials and Structures, 16: 687-695, (2007)

31. Liu T. and Shi Z.F., "Bending behavior of functionally gradient piezoelectric cantilever", Ferroelectrics, 308: 43- 51, (2004)

32. Taya M., Almajid A.A., Dunn M. and Takahashi H., "Design of bimorph piezo-composite actuators with functionally graded microstructure", Sensors and Actuators A: Physical, 107: 248-260, (2003)

33. Shi Z. F. and Zhang T., "Bending analysis of a piezoelectric curved actuator with a generally graded property for the piezoelectric parameter", Smart Materials and Structures, 17: 045018, (2008)

34. Li Y.S., Pan E., "Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory", International Journal of Engineering Science, 97: 40-59, (2015)

35. Komijani M., Reddy J.N., Eslami M.R., "Nonlinear analysis of microstructure-dependent functionally graded piezoelectric material actuators", Journal of the Mechanics and Physics of Solids, 63: 214-227, (2014)

36. Arslan E. and Eraslan A.N., "Bending of graded curved bars at elastic limits and beyond", International Journal of Solids and Structures, 50: 806-814, (2013)

37. Arslan E. and Mack W., "Shrink fit with solid inclusion and functionally graded hub", Composite Structures, 121: 217- 224, (2015)

38. Birman V. and Byrd L.W., "Modeling and analysis of functionally graded materials and structures", Applied Mechanics Reviews, 60: 195-216, (2007)

39. Anton S.R. and Sodano H.A., "A review of power harvesting using piezoelectric materials (2003-2006)", Smart Materials and Structures, 16: R1-R21, (2007)

40. Kuang Y.D., Li G.Q., Chen C.Y. and Min Q., "The static responses and displacement control of circular curved beams with piezoelectric actuators", Smart Materials and Structures, 16: 1016-1024, (2007)

41. Zhou Y., Nyberg T.R., Xiong G., Zhou H., "Precise deflection analysis of laminated piezoelectric curved beam", Journal of Intelligent Material Systems and Structures, online first, doi:10.1177/1045389X15624797, (2016)

42. Su Z., Jin G., Ye T., "Vibration analysis and transient response of a functionally graded piezoelectric curved beam with general boundary conditions", Smart Materials and Structures, 25: 065003, (2016)

43. Arslan E. and Usta R., "Mechanical and electrical fields of piezoelectric curved sensors", Archives of Mechanics, 66: 329-342, (2014)

44. Timoshenko S.P. and Goodier J.N., "Theory of Elasticity", McGraw-Hill, (1970)

45. Arslan E. and Eraslan A.N., "Analytical solution to the bending of a nonlinearly hardening wide curved bar", Acta Mechanica, 210: 71-84, (2010)

46. Kielczynski P. and Pajewski W., "Influence of a layered polarization of piezoelectric ceramics on shear-horizontal surface-wave propagation", Applied Physics B, 48: 383- 388, (1989)

47. Ruan X., Danforth S.C., Safari A. and Choua T.W., "SaintVenant end effects in piezoceramic materials", International Journal of Solids and Structures, 37: 2625- 2637, (2000)

48. Mendelson A., "Plasticity: Theory and Application", Macmillan, New York, (1968)