ÇRE-FKÇ Yönteminin Sabit Noktalı İşaret İşleyicilerle Giriş Gerilimi Dengesizliği Olan Sistemlerde Kullanımı için Adaptasyonu

Elektrik enerjisi elde etmek için nükleer ve fosil türü yakıtların kullanımının doğaya verdiği zararlar göz önüne alınarak, son yıllarda yenilenebilir enerji kaynaklarının kullanımı tercih edilmeye başlanmış ve çalışmalar hız kazanmıştır. Şebeke bağlantılı çevirici kullanılan yenilenebilir enerji sistemlerinde temel gerilimin frekans ve genliğinin hızlı bir şekilde takip edilmesi ve bağlantı yapılacak sistemin, şebeke hattında yaşanacak bozukluklara rağmen, şebekeye adaptasyonunun gerçekleştirilmesi gerekmektedir. Bu tip adaptasyon için kapalı çevrim algılama yöntemleri kullanılarak değişken frekans ve genlik bilgisi elde edilir. Elde edilen bu bilgi ile sistemin güç faktörü, şebekeye aktarılan aktif veya reaktif güç kontrolü sağlanabilir. En sık kullanılan frekans adaptasyon yöntemi, faz kilitlemeli çevrim (FKÇ) yöntemidir. Bu çalışmada senkron referans eksen (SRE) ile çoklu referans eksen (ÇRE) faz kilitlemeli çevrim (FKÇ) yöntemleri incelenmiş ve SRE-FKÇ ile ÇRE-FKÇ’nin sabit noktalı işaret işleyiciler/mikrokontrolörler ile kullanımına yönelik Matlab- Simulink benzetim karşılaştırmaları yapılmıştır. 

Adaptation of MRF-PLL Method to be Utilized with Fixed Point Digital Signal Processors Under Unbalanced Input Voltage Conditions

Considering the pollution created by the fossil and nuclear type fuels during electrical energy production, utilization of renewable energy has been preferred and studies have accelerated in recent years. In grid connected renewable energy systems, the amplitude and the frequency of the fundamental voltage have to be tracked quickly and the system connected to the grid, even under grid disturbances, has to be adapted to the grid quickly. For this kind of adaptation, closed loop detection methods are used in order to gather the frequency and the amplitude information. By having this information, it would be possible to control the power factor, active and reactive power flow of the system The most frequent used adaptation method is phased locked loop (PLL) method. In this study, Synchronous Reference Frame (SRF) and Multiple Reference Frame (MRF) Phased Locked Loop (PLL) methods have been investigated and applications of SRF-PLL along with MRF-PLL with fixed point digital signal processors/microcontrollers by utilizing Matlab-Simulink simulation comparisons have been done. 

___

  • [1] Kim Y., Kim K., Kwon B., Choi C, “A fast and robust PLL of MCFC PCS under unbalanced grid voltages”, IEEE Power Electronics Specialists Conference, Rodos, Greece, 4712 – 4716, (2008).
  • [2] Lyons J.P., Vlatkovic V., “Power electronics and alternative energy generation” IEEE Power Electronics Specialists Conference, Aachen, Germany, 16 – 21, (2004).
  • [3] Kaura V., Blasko V., “Operation of a phase locked loop system under distorted utility conditions” IEEE Transactions on Industry Application, 33(1): 58 – 63, (1997).
  • [4] Chung I., Moon S., “A New Islanding Detection Method using Phase-Locked Loop for Inverter-Interfaced Distributed Generators”, Journal of Electrical Engineering and Technology, 2(2): 165 – 171, (2007).
  • [5] Sim J., Kim K., Son R., Oh J., “Ride-through of PMSG Wind Power System Under the Distorted and Unbalanced Grid Voltage Dips”, Journal of Electrical Engineering and Technology, 7(6): 898- 904, (2012).
  • [6] Lee W., Sung K., Lee T., “Fast Detection Algorithm for Voltage Sags and Swells Based on Delta Square Operation for a Single-Phase Inverter System”, Journal of Electrical Engineering and Technology, 11(1): 157-176, (2016).
  • [7] Hoffmann N., Lohde R., Fischer M., Fuchs F.W., Asiminoaei L., Thogersen P.B., “A review on fundamental grid-voltage detection methods under highly distorted conditions in distributed power-generation networks”, IEEE Energy Conversion Congress and Exposition, Phoneix, USA, 3045 – 3052, (2011).
  • [8] Golestan S., Monfared M., Freijedo FD., “Design-Oriented Study of Advanced Synchronous Reference Frame Phase-Locked Loops”, IEEE Transactions on Power Electronics, 28(2): 765 – 778, (2013).
  • [9] Zhang S., Chen J., Zhou W., “A Method for Electrical Network Voltage Compensation without PLL Based on Coordinate Transformation” International Conference on Electrical Machines and Systems, Wuhan, China, 2150 – 2153, (2008).
  • [10] Hadjidemetriou L., Kyriakides E., Blaabjerg F., “A New Hybrid PLL for Interconnecting Renewable Energy Systems to the Grid” IEEE Transactions on Industry Application, 49(6): 2709 – 2719, (2013).
  • [11] Xiong F., Yue W., Ming L., Ke W., Wnjun L., “A Novel PLL for Grid Synchronization of Power Electronic Converters in Unbalanced and Variable-Frequency Environment” International Symposium on Power Electronics for Distributed Generation Systems, Hefei, China, 466 – 471, (2010).
  • [12] Rodriguez P., Pou J., Bergas J., Candela J.I., Burgos R.P., Boroyevich D., “Decoupled Double Synchronous Reference Frame PLL for Power Converters Control”, IEEE Transactions on Power Electronics, 22(2): 584 – 592, (2007).
  • [13] Limongi L.R., Bojoi R., Pica C., Profum F., Tenconi A., “Analysis and Comparison of Phase Locked Loop Techniques for Grid Utility Applications”, Power Conversion Conference, Nagoya, Japan, 674 – 681, (2007).
  • [14] Freijedo F.D., Doval-Gandoy J., Lopez O., Acha E., “A Generic Open Loop Algorithm for Three Phase Grid Voltage/Current Synchronization With Particular Reference to Phase, Frequency, and Amplitude Estimation”, IEEE Transactions on Power Electronics, 24(1): 94 – 107, (2009).
  • [15] Gonzales O.L., Buja G., “Novel PLL Scheme for Grid Connection of Three-Phase Power converters”, IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics & Drives, Bologna, Italy, 372 – 377, (2011).
  • [16] Ghoshal A., John V., “Performance evaluation of three phase SRF-PLL and MAF-SRF-PLL”, Turkish Journal of Electrical Engineering & Computer Sciences, 23: 1781 – 1804, (2015).
  • [17] Ramezani M., Golestan S., Shuhui L., Guerrero J.M., “A Simple Approach to Enhance the Performance of Complex-Coefficient Filter-Based PLL in Grid Connected Applications” IEEE Transactions on Industrial Electronics, 99: 1-6, (2017).
  • [18] Guo X, Wu W, Chen Z. “Multiple-Complex Coefficient-Filter-Based Phased Locked Loop and Synchronization Technique for Three-Phase Grid-Interfaced Converters in Distributed Utility Networks”, IEEE Transactions on Industrial Electronics, 58(4): 1194 – 1204, (2011).
  • [19] Rashed M., Klumpner C., Asher G., “Dynamic Phasor Analysis and Design of Phase Locked Loops for Single Phase Grid Connected Converters”, Compel, 34(4): 1122-1143, (2015).
  • [20] Rodriguez P., Teodorescu R., Candela I., Timbus A.V., Liserre M., Blaabjerg F., “New Positive-sequence Voltage Detector for Grid Synchronization of Power Converters under Faulty Grid Conditions”, IEEE Power Electronics Specialists Conference, Jeju, South Korea, 1 – 7, (2006).
  • [21] Chaoui H., Okoye O., Khayamy M., “Grid Synchronization Phase-Locked Loop Strategy for Unbalance and Harmonic Distortion Conditions”, Journal of Control, Automation and Electrical Systems, 27(4): 463–471, (2016).
  • [22] Khazraj H., da Silva F.F., Bak C.L., Golestan S, “Analysis and Design of notch filter-based PLLs for Grid-Connected Applications”, Electric Power Systems Research, 147: 62-69, (2017).