CNC kontrollü dairesel interpolasyon hareketlerindeki yuvarlaklık hatasının en küçük karaler metodu ile değerlendirilmesi

Bu çalışmada, ISO 230-4 "NC Tezgahlar için Dairesel Testler" isimli standarda dayalı yuvarlaklık (dairesellik) hatasının bulunmasına yönelik bir algoritma önerilmektedir. Daireyi, 2 boyutlu düzlemde gerçekleştirilen dairesel interpolasyon hareketine ait konum verisine uydurmak amacıyla en küçük kareler metoduna dayalı Gauss-Nevvton nümerik çözümleme yöntemi kullanılmıştır. Çok amaçlı ölçüm algoritması Matlab 6.5 yazılımı kullanılarak geliştirilmiş olup, CMM (Coordinate Measuring Machine), lazerli küresel çubuk, ızgara enkoderi gibi cihazlarda rahatlıkla kullanılabilmektedir.

The assessment of circularity error in CNC controlled circular interpolation movement by least squares method

In this study, an algorithm is proposed in order to find circularity error based on ISO 230-4 called "Circular tests for numerical controlled machine tools". For fitting circle to position data of circular interpolation movement in 2 dimensional plane, Gauss-Newton numerical solution method, based on least squares method, is used. Multi functional measuring algorithm is developed by using Matlab 6.5 software and it can be used easily in the devices such as CMM (Coordinate Measuring Machine), laser ball bar and cross grid encoder.

___

  • 1.Wang, M., Ceraghi, S. H. and Masud, A. S. M., Circularity error evaluation theory and algorithm, Precision Engineering, 23,164-176,1999.
  • 2.Toissant, G. T., Computing largest empty circles with location constraints, International Journal of Computer and Information Sciences, 12, 347-358,1983.
  • 3.Melville, R. C, An implementation study of two algorithms for the minimum spanning circle problem Ing. T. Touissant (Ed), Computational Geometry, 267-285, 1985.
  • 4.Elzinga, J. and Hearn, D. W., Geometrical solutions for some minimax location problems, Transportation Science, 6, 379-394,1971.
  • 5.Murthy, T. S. R. and Abdin, S. Z., Minimum zone evaluation of surfaces, International Journal of Machine Tool Design Research, 20,123-136,1980.
  • 6.Kim, N. H., Seung, W. K., Geometrical tolerances: Improved linear approximation of least-squares evaluation of circularity by minimum variance, Int. J. Machine Tools Manufact, 36, 355-366,1996.
  • 7.Shunmugam, M. S., New approach for evaluating form errors of engineering surfaces, Computer Aided Design, 19,368-374,1987.
  • 8.Cordero-Davilla, C. N. and Cornejo, R., Least squares estimators for the center and radius of circular patterns, Applied Optics, 32, 5683-5685,1993.
  • 9.Chetwynd, D. G., Application of linear programming to engineering metrology, Proceedings of Institution of Mechanical Engineers, 199, 93-100,1985.
  • 10.Xiong, Y. L., Computer-aided measurement of profile error of complex surfaces and curves: Theory and algorithm, Int J Machine Tools Manufact, 30, 339-357, 1990.
  • 11.Ventura J. A. Yeralan S., The minimax center estimation problem for automated roundness inspection, Euro J Op Res, 41, 64-72,1989.
  • 12.Wang, Y., Minimum zone evaluation of form tolerances, Manufacturing Review, 5, 213-220, 1992.
  • 13.Lin, S. S., Warghese, P., Zhang, C. and Wang H. P., A comparative analysis of CMM form-fitting algorithms, Manufact Rev,8, 47-58, 1995.
  • 14.Wang Y., "Minimum zone evaluation of form tolerances, Int J Machine Tool Design Res, 20, 123-136,1980.
  • 15.Loebritz, D., CMM software-the key issue, Quality Today, 1-6,1993.
  • 16.Dhanish, P. B. and Shanmugam, M. S., An algorithm for form error evaluation using the theory of discrete and linear Chebyshev approximation, Computer Methods in Applied Mathematics and engineering, 92, 300-324, 1991.
  • 17.Chatterjee, G. and Roth, B., On Chebyshev fits for pairs of lines and polygons with specified internal angles, Precision Engineering, 21, 43-56,1997.
  • 18.Witzgall C. and Howard H. H., Fitting circles and spheres to CMM machine data, The International journal of Flexible Manufacturing Systems, 10,5-25, 1998.
  • 19.Lai,K. and Wang J.A.,Computational geometry approach to geometric tolerancing, 16'th North American Manufacturing Research Conference, University of Illinois, 376-379,1988.
  • 20.Le, V. B. and Lee, D. T., Out of roundness problem revisited. IEEE Trans Part Analy Machine Intelligence, 13, 217-223,1991.
  • 21.Lai, J. Y. and Chen, I. H., Minimum zone evaluation of circles and cylinders, International journal of Machine Tool Design Research, 36, 435-451,1996.
  • 22.Novaski, O. and Barczak, A. L. C, Utilization of Voronoi diagrams for circularity algorithms, Precision Engineering, 20,188-195,1997.
  • 23.Samuel, G. L. and Shunmugam, M. S., Evaluation of circularity form coordinate and form data using computational geometric techniques, 24, 251-263, 2000.
  • 24.Rajagopal, K. and Anand, S., Assessment of circularity error using a selective data partition approach, Int. J. Prod Res, 37, 3959-3979,1999.
  • 25.ISO 230-4, Circular tests for numerical controlled machine tools, 1996.
  • 26.Http://www.udel.edu/HESC/HESC690/SphereFitting.pdf.
  • 27.Rapidform2004, Standard software for 3D Scanners, Inus Technology, 2004.