Biyopolimerler ve Montmorillonit Kil Nanokompozitleri

Biyopolimerlerin, termoset ve termoplastik polimerlerden farklı olarak biyolojik olarak parçalanabilmesi, doğaya uyumlu olması, atık miktarlarında azalma sağlaması gibi özelliklere sahip olması onlara olan ilgiyi arttırmıştır. Biyonanokompozitlerin düşük maliyet ve yüksek üretim hızlarında üretilmeleri; üstün mekanik, gaz bariyer ve termal özelliklere sahip olmalarından dolayı petrokimyasal bazlı polimerlerden üretilen nanokompozitlerden daha fazla rağbet görmektedir. Sürekli artan küresel nüfus, plastik atıkların miktarında artışa sebep olmaktadır. Atıkların yarattığı problemler, alternatif kaynak arayışları ve küresel ısınmaya neden olan CO2 gazının artışı, bilim adamlarını ve üreticileri biyobozunur polimerler konusunda çalışmalar yapmaya yönlendirmiştir. Bu çalışmada kitosan, selüloz, nişasta, polilaktikasit ve aljinat biyopolimerleri ile montmorillonit (MMT) kili kullanarak elde edilen biyonanokompozitlerin sentezi, karakterizasyonu ve hangi alanlarda kullanılabileceği araştırılmış ve şimdiye kadar yapılmış olan çalışmalar irdelenmiştir.

___

  • 1. Herdman R. C., “Biopolymers: making materials nature’s way”, Government Printing Office, Washington DC., U.S.A., (1993).
  • 2. Çankaya N., “Selüloz üzerinde aşılama çalışmaları”, Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ, (2011).
  • 3. Etemadi O., Petrisor I. G., Kim D., Wan M-W., Yen T. F., “Stabilization of metals in subsurface by biopolymers: laboratory drainage flow studies”, Soil and Sediment Contamination: An International Journal, 12(5): 647-661, (2003).
  • 4. John J. M., Thomas S., “Natural polymers”, RSC Green Chemistry, 17, RSC Publishing, (2012).
  • 5. Utracki L. A., “Clay-containing polymeric nanocomposites”, Rapra Technology Limited, 1, United Kingdom, (2004).
  • 6. Ünlü C. H., “Mısır koçanı ksilanından mikro/nanokompozit eldesi”, Doktora Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul (2009).
  • 7. Eser N., “Bazı halloysit-polimer nanokompozitlerin hazırlanması ve karakterizasyonu”, Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara (2010).
  • 8. Grim R. E. and Güven N.,“Bentonites, geology, mineralogy, properties and uses (devel. sedimentol., 24)”, Elsevier, Amsterdam, 256, (1978) .
  • 9. Holtz R. D. and Kovacs W. D., “An introduction to geotechnical engineering”, Prentice-Hall, Inc., New Jersey, (1981).
  • 10. Yano K., Usuki A., Okada A. T. and Kamlgalto K. O., “Synthesis and properties of polyimide-clay hybrid”, Journal of Polymer Science: Part A Polymer Chemistry, 31: 2493-2498, (1993).
  • 11. Magaraphan R., Lilayuthalert W., Sirivat A. and Schwank J. W., “Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites”, Composites Science and Technology, 61: 1253-1264, (2001).
  • 12. Noyan H., “Sütunlanmış killerin hazırlanması ve bazı fizikokimyasal özelliklerinin belirlenmesi”, Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara (2007).
  • 13. Toprakgezer F., “Nanokompozit sentezinde kullanılacak Na-bentonit kilinin saflaştırılması”, Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana (2010).
  • 14. Ahmadi S. J., G’Sell C., Huang Y., Ren N., Mohaddespour A., Hiver J. M., “Mechanical properties of NBR/clay nanocomposites by using a novel testing system”. Composites Science and Technology, 69: 2566-2572, (2009).
  • 15. Paiva L. B., Morales A. R. and Díaz F. R. V.,“Organoclays: properties, preparation and applications”, Applied Clay Science, 42: 8-24, (2008).
  • 16.Çankaya N., Sökmen Ö., “Kitosan-Cloisite kili biyonanokompozitleri”, International Science Symposium, İstanbul/Büyükada, 133-142, (2016).
  • 17. Seçkin T., “Biyopolimerler”, “Polimer kimyası fonksiyonel yaklaşım ve uygulamaları”, Seçkin Yayıncılık, Ankara, (2015).
  • 18. Lim S.H., “Synthesis of a fiber-reactive chitosan derivative and its application to cotton fabric as an antimicrobial finish and a dyeing-improving agent”, Ph.D Thesis, North Carolina State University, U.S.A, (2002).
  • 19. Çankaya N., Turan N. and Sökmen Ö., “Schiff bazı biyopolimerleri”, International Science Symposium, İstanbul/Büyükada, 67-77, (2016).
  • 20. Darder M., Colilla M. and Hitzky E. R., “Chitosan-clay nanocomposites: application as electrochemical sensors”, Applied Clay Science, 28: 199-208, (2005).
  • 21. Wang S. F., Shen L., Tong Y. J., Chen L., Phang I. Y., Lim P. Q., Liu T. X., “Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization”, Polymer Degradation and Stability, 90: 123-131, (2005).
  • 22. Choudhari S. K., Kariduraganavar M. Y., “Development of novel composite membranes using quaternized chitosan and Na+-MMT clay for the pervaporation dehydration of isopropanol”, Journal of Colloid and Interface Science, 338: 111-120, (2009).
  • 23. Zhang J. P., Wang A. Q.,”Synergistic effects of Na+-montmorillonite and multi-walled carbon nanotubes on mechanical properties of chitosan film”, Express Polymer Letters, 3: 302-308, (2009).
  • 24. Yao H. B., Tan Z. H., Fang H. Y., Yu S. H., “Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks”, Angewandte Chemie International Edition, 49: 10127-10131, (2010).
  • 25. Lavorgna M., Piscitelli F., Mangiacapra P. And Buonocore G. G., “Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films”, Carbohydrate Polymers, 82: 291-298, (2010).
  • 26. Ahmad M. B., Shameli K., Darroudi M., Yunus W. M. Z. W. and Ibrahim N. A., “Synthesis and characterization of silver/clay/chitosan bionanocomposites by UV-ırradiation metho”, American Journal of Applied Sciences, 6(12): 2030-2035, (2009).
  • 27. Günister E., Pestreli D., Ünlü C. H., Atıcı O. and Güngör N., “Synthesis and characterization of chitosan-MMT biocomposite systems”, Carbohydrate Polymers, 67: 358-365, (2007) .
  • 28. Hong S. I., Lee J. H., Bae H. J., Koo S. Y., Lee H. S., Choi J. H., Kim D. H., Park S. H. and Park H. J., “Effect of shear rate on structural, mechanical, and barrier properties of chitosan/montmorillonite nanocomposite film”, Journal of Applied Polymer Science, 119: 2742-2749, (2011).
  • 29. Chang M. Y., Juang R. S., “Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay”, Journal of Colloid and Interface Science, 278: 18-25, (2004).
  • 30. Çankaya N. and Sökmen Ö., “Selüloz-Cloisite kili içeren biyonanokompozitler”, 1st International Academic Research Congress, Antalya/Side , (2016).
  • 31. Williams P. A., “Renewable resources for functional polymers and biomaterials”, RSC Publishing, Glyndwr University, Wrexham, UK, (2011).
  • 32. Kırcı H., Ateş S. ve Akgül M., “Selüloz türevleri ve kullanım yerleri”, Fen ve Mühendislik Dergisi, 4(2): 119-130, (2001).
  • 33. Pranger L. and Tannenbaum R., “Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay”, Macromolecules, 41: 8682-8687, (2008).
  • 34. Liu A., Walther A., Ikkala O., Belova L. and Berglund L. A., “Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions”, Biomacromolecules, 12: 633-641, (2011).
  • 35. Ul-Islam M., Khana T. and Park J. K., “Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications”, Carbohydrate Polymers, 89: 1189-1197, (2012).
  • 36. Yang Q., Wu C.-N., Saito T. and Isogai A.,“Cellulose-clay layered nanocomposite films fabricated from aqueous cellulose/LiOH/urea solution”, Carbohydrate Polymers, 100: 179-184, (2014).
  • 37. Romero R. B., Leite C. A. P. and Gonçalves M. D. C., “The effect of the solvent on the morphology of cellulose acetate/montmorillonite nanocomposites”, Polymer, 50: 161-170, (2009).
  • 38. Tunç S., Duman O. and Polat T. G., “Effects of montmorillonite on properties of methyl cellulose/carvacrolbased active antimicrobial nanocomposites”, Carbohydrate Polymers, 150: 259-268, (2016).
  • 39. Ahmadzadeh S., Desobry S., Keramata J. and Nasirpour A., “Crystalline structure and morphological properties of porouscellulose/clay composites: the effect of water and ethanol ascoagulants”, Carbohydrate Polymers, 141: 211-219, (2016).
  • 40. Kumar A. S. K., Kalidhasan S., Rajesh V. and Rajesh N., “Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater”, Industrial & Engineering Chemistry Research, 51: 58-69, (2012).
  • 41. Zobel H. F., “Molecules to granules: a comprehensive starch review”, Starch/Stärke ,40: 44-50, (1988). 42. Alavi S., “Starch research over the years”, Food Research International, 36: 307-308, (2003).
  • 43.Hoover R., “Composition, molecular structure, and physicochemical properties of tuber and root starches: a review”, Carbohydrate Polymers, 45: 253-267, (2001).
  • 44. Karapantsios T. D., Sakonidou E. P. and Raphaelides S. N., “Water dispersion kinetics during starch gelatinization”, Carbohydrate Polymers, 49: 479-490, (2002).
  • 45. Huang M. and Yu J., “Structure and properties of thermoplastic corn starch/montmorillonite biodegradable composites”, Journal of Applied Polymer Science, 99: 170-176, (2006).
  • 46. Olad A. and Azhar F. F., “Eco-friendly biopolymer/clay/conducting polymer nanocomposite: characterization and its application in reactive dye removal”, Fibers and Polymers, 15: 1321-1329, (2014).
  • 47. Manjunath L., Sailaja R. R. N., “Starch/polyethylene nanocomposites: mechanical, thermal, and biodegradability characteristics”, Composıtes Engineers, 1-12, (2014).
  • 48. Pandey J. K. and Singh R. P., “Green nanocomposites from renewable resources: effect of plasticizer on the structure and material properties of clay-filled starch”, Starch/Stärke, 57: 8-15, (2005).
  • 49. Müller P., Kapin É. and Fekete E., “Effects of preparation methods on the structure and mechanical properties of wet conditioned starch/montmorillonite nanocomposite films”, Carbohydrate Polymers, 113: 569-576, (2014).
  • 50. Gao W., Dong H., Hou H. and Zhang H., “Effects of clays with various hydrophilicities on properties of starch-clay nanocomposites by film blowing”, Carbohydrate Polymers, 88: 321-328, (2012).
  • 51. Üner İ. ve Koçak E. D., “Poli(laktik asit)’in kullanım alanları ve nano lif üretimdeki uygulamaları”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 11 (22): 79-88, (2012).
  • 52. Dorgan J., Lehermeier R. H. and Mang M., “Thermal and rheological properties of commercial-grade poly(lactic acid)s”, Journal of Polymers and the Environment, 8: 1-9, (2000).
  • 53. Gu S. Y., Ren J. and Dong B., “Melt rheology of polylactide/montmorillonite nanocomposites”, Journal of Polymer Science: Part B: Polymer Physics, 45: 3189-3196, (2007).
  • 54. Gumus S., Ozkoc G. and Aytac A., “Plasticized and unplasticized PLA/organoclay nanocomposites: short- and long-term thermal properties, morphology, and nonisothermal crystallization behavior”, Journal of Applied Polymer Science, 123: 2837-2848, (2012).
  • 55. Pluta M., Galeski A., Alexandre M., Paul M.A. and Dubois P., “Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties”, Journal of Applied Polymer Science, 86: 1497-1506, (2002).
  • 56. Ren J., Yu T., Li H., Ren T. and Yang S., “Studies on morphologies and thermal properties of poly(lacticacid)/polycaprolactone/organic-modified montmorillonite nanocomposites”, Polymer Composites, 29: 1145-1151, (2008).
  • 57. Ogata N., Jımenez G., Hıdekazu K. and Ogıhara T., “Structure and thermal/mechanical properties of poly (l-lactide)-clay blend”, Journal of Polymer Science, 35: 389-396, (1997).
  • 58. Katiyar V., Gerds N., Koch C. B., Risbo J., Hansen H. C. B. and Plackett D., “Melt processing of poly(l-lactic acid) in the presence of organomodified anionic or cationic clays”, Journal of Applied Polymer Science, 122: 112-125, (2011).
  • 59. Safi S., Morshed M., Ravandi H. S. A. and Ghiachi M., “Study of electrospinning of sodium alginate, blended solutions of sodium alginate/poly(vinyl alcohol) and sodium alginate/poly (ethylene oxide)”, Journal of Applied Polymer Science, 104: 3245-3255, (2007).
  • 60. Zactiti E. M. and Kieckbush T., “Potassium sorbate permeability in biodegradable alginate films”, Journal of Food Engineering, 77: 462-467, (2006).
  • 61. Zlopasa J., Norder B., Koenders E. A. B. and Picken S. J., “Origin of highly ordered sodium alginate/montmorillonite bionanocomposites”, Macromolecules, 48: 1204-1209, (2015).
  • 62. Alboofetıleh M., Rezaei M., Hosseini H. and Abdollahi M., “Effect of nanoclay and cross-linking degree on the properties of alginate-based nanocomposıte film”, Journal of Food Processing and Preservation, 38: 1622-1631, (2014).
  • 63.Çankaya N. ve Sökmen Ö., “Kitosan Kil Biyonanokompozitleri”, Politeknik Dergisi, 19(3): 283-285, (2016).