AZ31B Magnezyum Alaşımının Sürtünmeli Delme İşlemi Üzerine Deneysel Çalışma

Bu çalışmada sabit devir ve ilerleme hızında minimum miktarda yağlama (MQL) kullanılarak AZ31B Mg alaşımı üzerine sürtünmeli delme yöntemi ile delik delme işlemi yapılmıştır. Deneylerde MQL uygulama sürelerinin eksenel kuvvet, sıcaklık, yüzey pürüzlülüğü, kovan yapısı ve vida sıyırma dayanımı üzerindeki etkileri araştırılmıştır. Sürtünmeli delme işlemi esnasında eksenel kuvvet oluşumu 7 farklı bölgede, sıcaklık oluşumu 2 farklı bölgeden meydana geldiği görülmüştür. Artan MQL uygulama süreleri yüzey pürüzlülüğü üzerinde olumlu etkili yapmış ve pul duvarına malzeme yapışmasını azaltmıştır. Yapılan işlemlerde elde edilen bütün delik geometrileri kabul edilebilir niteliktedir. MQL uygulama süreleri işlem esnasında ortaya çıkan ısıyı değiştirdiğinden dolayı parabol, lineer ve ikili lineer olmak üzere üç farklı kovan profili elde edilmiştir. Delik yüzey kalitesinin vida sıyırma dayanımı üzerinde bir etkisinin olmadığı, kovan profilinin ve kovan uzunluğunun kombinasyonu belirleyici olduğu görülmüştür. En düşük vida sıyırma dayanımı kuru işleme şartları altında gerçekleşirken en yüksek vida sıyırma dayanımı 10 sn MQL uygulamasının yapıldığı deneylerde elde edilmiştir. 

Experimental Study on the Friction Drilling Process of AZ31B Magnesium Alloy

In the present study, hole drilling was performed by using the friction drilling method on AZ31B Mg alloy at a constant speed and feed rate under minimum quantity lubrication (MQL) environment. In the experiments, the effects of MQL application times on axial force, temperature, surface roughness, bushing profile, and thread pull-out strength was investigated. The test results revealed that MQL applications reduced the temperature in the process region and caused an increase in axial force. During the friction drilling process, it was observed that the axial forces occurred in 7 different zones while the temperature consisted of 2 different zones.The increasing MQL application times were positively affected to hole surface quality and reduced the formation of the material adhesion on the hole wall. Three different bushing profiles were obtained as a parabola, linear, and binary linear depending on the generated heat exchange because of the MQL application times. The test results revealed that the hole surface quality has no effect on the thread pull-out strength, and the combination of the bushing profile and bushing length was decisive. The lowest thread pull-out strength was measured under dry drilling conditions, while the highest thread pull-out strength achieved by 10 seconds of MQL application. 

___

1. Bilgin M., Karabulut Ş. and Özdemir A., “Investigation of Heat-Assisted Dissimilar Friction Stir Welding of AA7075-T6 Aluminum and AZ31B Magnesium Alloys”, Arabian Journal for Science and Engineering, 45(2): 1081–1095, (2020).

2. Kainer, K. U. (Ed.). “Magnesium alloys and technology”, John Wiley and Sons, (2003).

3. Urbikain G., Perez J. M., López de Lacalle L. N. and Andueza A., “Combination of friction drilling and form tapping processes on dissimilar materials for making nutless joints”, Proc. of the Inst. of Mec. Eng. Part B: J.of Eng. Man., 232(6): 1007–1020, (2018).

4. Brinksmeier E., “Prediction of Tool Fracture in Drilling”, CIRP annals, 39 (1): 97 - 100, (1990).

5. https://thermdrill.com/threaded-bushing-flowing-drill-instead-of-rivet-nut/, (20 Nisan 2020)

6. Kumar R. and Jesudoss Hynes N. R., “Thermal drilling processing on sheet metals: A review. Int. J. of Lightweight Mat. and Man.,2(3):193-205, (2019).

7. Shalamov P. V., Kulygina I. A. and Yaroslavova E. N., “ANSYS software-based study of thermal drilling process”, Procedia Eng., 150: 746-752, (2016).

8. Özler L., “The influence of variable feed rate on bushing and surface roughness in friction drilling”, Journal of the Brazilian Soc. of Mec. Sci. and Eng., 41(8), 308, (2019). 9. Miller S. F., Tao J. and Shih A. J., “Friction drilling of cast metals”, Int. Journal of Mac. Tools and Man., 46(12–13): 1526–1535, (2006).

10. Rao K. H., Gopichand A., Kumar N. P. and Jitendra K., “Optimization of machining parameters in friction drilling process”, Int. J. of Mec. Eng. and Technology, 8(4): 242–254, (2017).

11. Lee S. M., Chow H. M., Huang F. Y. and Yan B. H., “Friction drilling of austenitic stainless steel by uncoated and PVD AlCrN- and TiAlN-coated tungsten carbide tools”, Int. J. of Mac. Tools and Man., 49(1): 81–88, (2009).

12. Ku W. L., Hung C. L., Lee S. M. and Chow H. M., “Optimization in thermal friction drilling for SUS 304 stainless steel”, Int. J. of Adv. Manufacturing Technology, 53(9–12): 935–944, (2011).

13. Lee S. M., Chow H. M. and Yan B. H., “Friction drilling of IN-713LC cast superalloy”, Mat. and Man. Processes, 22(7): 893–897, (2007).

14. Kaya M. T., Aktas A., Beylergil B. and Akyildiz H. K., “An experimental study on friction drilling of ST12 steel”, Trans. of the Canadian Soc. for Mec. Eng., 38(3): 319–329, (2014).

15. Ozler L. and Dogru N., “An experimental investigation of hole geometry in friction drilling”, Mat. and Man. Processes, 28(4): 470–475, (2013).

16. Demir Z. and Özek C., “Sürtünmeli delme işleminde vida sıyırma kuvvetinin araştırılması”, UTİS 2013. Kuşadası, (2013).

17. Biermann D. and Liu Y., “Innovative flow drilling on magnesium wrought alloy AZ31”, Procedia CIRP, 18: 209–214, (2014).

18. Demir Z. and Özek C., “Investigate the effect of pre-drilling in friction drilling of A7075-T651”, Mat. and Manufacturing Processes, 29(5): 593–599, (2014).

19. Wittke P., Teschke M. and Walther F., “Mechanical characterization of friction drilled internal threads in AZ91 profiles”, Int. Journal of Adv. Manufacturing Technology, 99(9–12): 3111–3122, (2018).

20. Biermann D., Walther F., Hannich S. and Wittke P., “Front face flow drilling of lightweight cast materials”, Procedia Eng., 207: 956–961, (2017).

21. Pereira O., Urbikaín G., Rodríguez A., Calleja A., Ayesta I. and López de Lacalle L. N., “Process performance and life cycle assessment of friction drilling on dual-phase steel”, Journal of Cleaner Production, 213: 1147–1156, (2019).

22. Chow H. M., Lee S. M. and Yang L. D., “Machining characteristic study of friction drilling on AISI 304 stainless steel”, Journal of Materials Processing Technology, 207(1–3): 180–186, (2008).

23. Dudzinski D., Devillez A., Moufki A., Larrouquère D., Zerrouki V. and Vigneau J., “A review of developments towards dry and high speed machining of Inconel 718 alloy”, Int. Journal of Machine Tools and Manufacture, 44(4): 439–456, (2004).

24. Haan D. M., Batzer S. A., Olson W. W. and Sutherland J. W., “An experimental study of cutting fluid effects in drilling”, Journal of Materials Processing Technology, 71(2): 305–313, (1997).

25. Klocke F. and Gerschwiler K., “Trockenbearbeitung Grundlagen Grenzen, Perspektiven”, Vdı Berıchte, 1339: 1–50, (1997).

26. Heinemann R., Hinduja S., Barrow G. and Petuelli G., “Effect of MQL on the tool life of small twist drills in deep-hole drilling”, Int. Journal of Machine Tools and Manufacture, 46(1): 1–6, (2006).

27. Rahim E. A. and Sasahara H., “A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys”, Tribology Int., 44(3): 309–317, (2011).

28. Tai B. L., Stephenson D. A., Furness R. J. and Shih A. J., “Minimum quantity lubrication (MQL) in automotive powertrain machining”, Procedia CIRP, 14: 523–528, (2014).

29. http://www.fdrill.com/en/faq.asp. 2020-05-22.

30. Miller S. F., Blau P. J. and Shih A. J., “Microstructural alterations associated with friction drilling of steel, aluminum, and titanium”, Journal of Mat. Eng. and Perfor., 14(5): 647–653, (2005).

31. Boopathi M., Shankar S., Manikandakumar S. and Ramesh R., “Experimental investigation of friction drilling on brass, aluminium and stainless steel”, Procedia Engineering, 64: 1219-1226, (2013). 32. Jun Q. and Blau P. J., “A new model to calculate friction coefficients and shear stresses in thermal drilling”, J. of man. science and eng., 130 (1), (2008).

33. Miller S. F., Li R., Wang H. and Shih A. J., “Experimental and numerical analysis of the friction drilling process”, J. of Man. Sci. and Engineering, Transactions of the ASME, 128(3): 802–810, (2006).

34. Van Geffen J. A., “Piercing Tools, US Patent 3.939.683.”, (1976).

35. Van Geffen J. A., “Rotatable Piercing Tools for Forming Bossed Holes, US Patent 4.185.486.”, (1980).

36. Polmear I. J., “Magnesium alloys and applications”, Materials sci. and technology, 10(1): 1–16, (1994).

37. Dehghan S., Ismail M. I. S., Ariffin M. K. A. and Baharudin B. T. H. T., “Experimental investigation on friction drilling of titanium alloy”, Engineering Solid Mechanics, 6(2): 135–142, (2018).

38. BS ISO 68 - 1, “ISO general purpose screw threads - Basic profile Part 1: Metric screw threads”, (1998)

39. Dehghan S., Ismail M. I. S. B., Mohd Ariffin M. K. A. B. and Baharudin B. T. H. T. B., “Friction drilling of difficult-to-machine materials: Workpiece microstructural alterations and tool wear”, Metals, 9(9): (2019).

40. Eliseev A. A., Fortuna S. V., Kolubaev E. A. and Kalashnikova T. A., “Microstructure modification of 2024 aluminum alloy produced by friction drilling”, Mat. Sci. and Engineering A, 691: 121–125, (2017).

41. Bono M. and Ni J., “The effects of thermal distortions on the diameter and cylindricity of dry drilled holes”, International Journal of Machine Tools and Manufacture, 41(15): 2261–2270, (2001).

42. Demir, Z., “Sürtünmeli Delmede En Uygun Devir Sayısı ve İlerleme Hızının Araştırılması”, Tech. Applied Sciences, 8(1): 7–17, (2013).

43. Ozek C. and Demir Z., “Investigate the Friction Drilling of Aluminium Alloys According to the Thermal Conductivity”, TEM J., 2(1):93–101,(2013).

___

Bibtex @araştırma makalesi { politeknik762945, journal = {Politeknik Dergisi}, eissn = {2147-9429}, address = {Gazi Üniversitesi Teknoloji Fakültesi 06500 Teknikokullar - ANKARA}, publisher = {Gazi Üniversitesi}, year = {2021}, volume = {24}, number = {4}, pages = {1655 - 1666}, doi = {10.2339/politeknik.762945}, title = {AZ31B Magnezyum Alaşımının Sürtünmeli Delme İşlemi Üzerine Deneysel Çalışma}, key = {cite}, author = {Bilgin, Musa} }
APA Bilgin, M. (2021). AZ31B Magnezyum Alaşımının Sürtünmeli Delme İşlemi Üzerine Deneysel Çalışma . Politeknik Dergisi , 24 (4) , 1655-1666 . DOI: 10.2339/politeknik.762945
MLA Bilgin, M. "AZ31B Magnezyum Alaşımının Sürtünmeli Delme İşlemi Üzerine Deneysel Çalışma" . Politeknik Dergisi 24 (2021 ): 1655-1666 <
Chicago Bilgin, M. "AZ31B Magnezyum Alaşımının Sürtünmeli Delme İşlemi Üzerine Deneysel Çalışma". Politeknik Dergisi 24 (2021 ): 1655-1666
RIS TY - JOUR T1 - AZ31B Magnezyum Alaşımının Sürtünmeli Delme İşlemi Üzerine Deneysel Çalışma AU - Musa Bilgin Y1 - 2021 PY - 2021 N1 - doi: 10.2339/politeknik.762945 DO - 10.2339/politeknik.762945 T2 - Politeknik Dergisi JF - Journal JO - JOR SP - 1655 EP - 1666 VL - 24 IS - 4 SN - -2147-9429 M3 - doi: 10.2339/politeknik.762945 UR - Y2 - 2020 ER -
EndNote %0 Politeknik Dergisi AZ31B Magnezyum Alaşımının Sürtünmeli Delme İşlemi Üzerine Deneysel Çalışma %A Musa Bilgin %T AZ31B Magnezyum Alaşımının Sürtünmeli Delme İşlemi Üzerine Deneysel Çalışma %D 2021 %J Politeknik Dergisi %P -2147-9429 %V 24 %N 4 %R doi: 10.2339/politeknik.762945 %U 10.2339/politeknik.762945
ISNAD Bilgin, Musa . "AZ31B Magnezyum Alaşımının Sürtünmeli Delme İşlemi Üzerine Deneysel Çalışma". Politeknik Dergisi 24 / 4 (Aralık 2021): 1655-1666 .
AMA Bilgin M. AZ31B Magnezyum Alaşımının Sürtünmeli Delme İşlemi Üzerine Deneysel Çalışma. Politeknik Dergisi. 2021; 24(4): 1655-1666.
Vancouver Bilgin M. AZ31B Magnezyum Alaşımının Sürtünmeli Delme İşlemi Üzerine Deneysel Çalışma. Politeknik Dergisi. 2021; 24(4): 1655-1666.
IEEE M. Bilgin , "AZ31B Magnezyum Alaşımının Sürtünmeli Delme İşlemi Üzerine Deneysel Çalışma", Politeknik Dergisi, c. 24, sayı. 4, ss. 1655-1666, Ara. 2021, doi:10.2339/politeknik.762945