AISI 5140 Çeliğinin Tornalanması Esnasında Yaklaşma Açısı ve Kesme Parametrelerinin İşlenebilirliğe Etkisinin İncelenmesi

Doğası gereği karmaşık bir yapıya sahip olan tornalama ile şekillendirilecek bir malzemenin en iyi işleme şartlarının belirlenmesi maliyet, zaman ve verimlilik açısından önem kazanmaktadır. Bu çalışmada orta karbonlu alaşım çeliği AISI 5140 malzemenin kuru kesme şartlarında tornalanması esnasında kesme parametrelerinin ve yaklaşma açısının çeşitli işlenebilirlik kıstasları üzerine etkisi deneysel olarak incelenmiştir. Dinamometre, akselerometre ve yüzey pürüzlülük cihazı kullanılarak esas kesme kuvveti (Fc), titreşim (Vb) ve deney malzemesi yüzey pürüzlülüğü (Ra) ölçümleri yapılmıştır. Taguchi tasarımına göre 27 adet deney yapılmış, deneylerde Fc ve Vb anlık olarak ölçülürken, işleme durdurulduğunda Ra ölçümü gerçekleştirilmiştir. Yaklaşma açısı ve kesme parametrelerinin etkisi grafiksel olarak incelenmiş, deney malzemesinin en iyi işlenme şartları farklı işlenebilirlik kıstasları göz önüne alınarak değerlendirilmiştir. Bu çalışmada, başta otomotiv sektörü olmak üzere çeşitli alanlarda yaygın kullanıma sahip olan ancak geçmişte sınırlı sayıda çalışmanın konusu olan AISI 5140 çeliğinin işlenebilirliği kapsamlı olarak incelenmiştir. Elde edilen bulgulara göre, Fc, Vb ve Ra üzerinde ilerleme oranının etkili parametre olduğu görülmüştür. Yaklaşma açısının Fc başta olmak üzere tüm kalite karakteristikleri üzerinde etkili olduğu görülmüştür.

Investigation of the Effects of Approaching Angle and Cutting Parameters on Machinability of AISI 5140 Steel during Turning

Determining the best processing conditions of a material to be formed by turning which is intrinsically complex structure, gains importance in terms of cost, time and efficiency. In this study, the effect of cutting parameters and approach angle on various machinability characteristics during the turning of medium carbon alloy steel AISI 5140 material in dry cutting conditions were investigated experimentally. Using the dynamometer, accelerometer and surface roughness device, the main cutting force (Fc), vibration (Vb) and workpiece surface roughness (Ra) measurements were carried out. According to the Taguchi design, 27 experiments were performed while the Fc and Vb were measured on-line during the experiments, Ra measurement was performed. The effects of approaching angle and cutting parameters were examined graphically; the best machining conditions of the workpiece were evaluated by considering different machinability criteria. In this study, the machinability of AISI 5140 steel is investigated comprehensively which is utilized in various areas mainly on automotive industry however had limited study in the past. According to findings, feed rate is the effective parameter on Fc ve Ra while depth of cut and feed rate is seen as efficient on Vb. It is seen that approaching angle is effective all on quality characteristics especially on main cutting force.

___

  • [1] Grzesik, W., “Wear development on wiper Al2O3–TiC mixed ceramic tools in hard machining of high strength steel”, Wear, 266:1021-1028 (2009).
  • [2] Ebrahimi, A., Moshksar, M., “Study of machinability in boring operation of microalloyed and heat-treated alloy steels”, Materials Science and Engineering: A, 460, 314-323 (2007).
  • [3] Ebrahimi, A., Moshksar, M., “Evaluation of machinability in turning of microalloyed and quenched-tempered steels: Tool wear, statistical analysis, chip morphology”, Journal of Materials Processing Technology, 209(2):910-921 (2009).
  • [4] Li, H.Y., He, H.B., Han, W.Q. Yang, J., Gu, T., Li, Y.M., Lyu, S.K., “A study on cutting and tribology performances of TiN and TiAlN coated tools”, International Journal of Precision Engineering and Manufacturing, 16(4):781-786 (2015).
  • [5] Zhang, Y., Cheng, Y., Hu, H., Yin, Z., “Experimental study on cutting performance of microwave sintered Ti (C, N)/Al2O3 cermet tool in the dry machining of hardened steel”, The International Journal of Advanced Manufacturing Technology, 91(9-12):3933-3941 (2017).
  • [6] Huang, X., Ren, Y., Li, T., Zhou, Z., Zhang, G., “Influence of minimum quantity lubrication parameters on grind-hardening process”, Materials and Manufacturing Processes, 33(1):69-76 (2018).
  • [7] Köklü, U. “Grinding with helically grooved wheels. Proceedings of the Institution of Mechanical Engineers”, Part E: Journal of Process Mechanical Engineering, 228(1):33-42 (2014).
  • [8] Grzesik, W., Wanat, T., “Comparative assessment of surface roughness produced by hard machining with mixed ceramic tools including 2D and 3D analysis”, Journal of Materials Processing Technology, 169(3):364-371 (2005).
  • [9] Kahraman, F., “Optimization of cutting parameters for surface roughness in turning of studs manufactured from AISI 5140 steel using the Taguchi method”, Materials Testing, 59(1):77-80 (2017).
  • [10] Aslan, A., “Optimization and Analysis of Process Parameters for Flank Wear, Cutting Forces and Vibration in Turning of AISI 5140: A Comprehensive Study”, Measurement, 165:107959 (2020).
  • [11] Sağlam, H., Ünsaçar, F., Yaldız, S., “Investigation of the effect of rake angle and approaching angle on main cutting force and tool tip temperature”, Machine Tools and Manufacture, 16:132-141 (2006).
  • [12] Neşeli, S., Yaldız, S., “The Effects of Approach Angle and Rake Angle Due to Chatter Vibrations on Surface Roughness in Turning,” Journal of Polytechnic, 10(4):383-389 (2007).
  • [13] Kuntoğlu, M., Sağlam, H., “Investigation of progressive tool wear for determining of optimized machining parameters in turning”, Measurement, 140: 427-436 (2019).
  • [14] Sağlam, H., Yaldız, S., Ünsaçar, F., “The effect of tool geometry and cutting speed on main cutting force and tool tip temperature”, Materials and Design, 28:101-111 (2007).
  • [15] Salur, E., Aslan, A., Kuntoğlu, M., Güneş, A., Şahin, Ö. S., “Experimental study and analysis of machinability characteristics of metal matrix composites during drilling,” Composites Part B, 166:401-413 (2019).
  • [16] Mohanraj, T., Shankar, S., Rajasekar, R., Sakhtivel, N., and Pramanik, A., "Tool condition monitoring techniques in milling process-a review," Journal of Materials Research and Technology, 9:1032-1042 (2019).
  • [17] Mia, M., Dey, P. R., Hossain, M. S., Arafat, M. T., Asaduzzaman, M., Ullah, M. S., Zobaer, S. M. T., “Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition,” Measurement, 122:380-391 (2019).
  • [18] Yan, W., Wong, Y., Lee, K., Ning, T., “An investigation of indices based on milling force for tool wear in milling”, Journal of Materials Processing Technology, 89:245-253 (1999).
  • [19] Hao, G., Liu, Z., “The heat partition into cutting tool at tool-chip contact interface during cutting process: a review” The International Journal of Advanced Manufacturing Technology, 108:393-411 (2020).
  • [20] Kuntoğlu, M., Aslan, A., Sağlam, H., Pimenov, D. Y., Giasin, K., Mikolajczyk, T., ”Optimization and Analysis of Surface Roughness, Flank Wear and 5 Different Sensorial Data via Tool Condition Monitoring System in Turning of AISI 5140”, Sensors 20:4377, (2020).
  • [21] Kuntoğlu, M., Aslan, A., Pimenov, D. Y., Giasin, K., Mikolajczyk, T., Sharma, S., “Modeling of Cutting Parameters and Tool Geometry for Multi-Criteria Optimization of Surface Roughness and Vibration via Response Surface Methodology in Turning of AISI 5140 Steel”, Materials, 13:4242, (2020).
  • [22] Kuntoğlu, M., Sağlam, H., “Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning”, 108582, Measurement, (2020).
  • [23] Bensouilah, H., Aouici, H., Meddour, I., Yallese, M. A., Mabrouki, T., Girardin, F., “Performance of coated and uncoated mixed ceramic tools in hard turning process,” Measurement 82:1–18 (2016).
  • [24] Manivel, D., Gandhinathan, R., ”Optimization of surface roughness and tool wear in hard turning of austempered ductile iron (grade 3) using Taguchi method,” Measurement 93:108–116 (2016).
  • [25] Asilturk, İ., Akkus, H., “Determining the effect of cutting parameters on surface roughness in hard turning using the taguchi method”, Measurement, 44:1697–1704 (2011).
  • [26] Sandvik Coromant A Practical Handbook, Modern Metal Cutting, Sweden: 1994.
  • [27] Şahinoğlu, A., Güllü, A., Dönertaş, M. A., “GGG50 Malzemenin Torna Tezgâhında İşlenmesinde Kesme Parametrelerinin Titreşim, Ses Şiddeti ve Yüzey Pürüzlülüğü Üzerinde Etkisinin Araştırılması”, Sinop Üniversitesi Fen Bilimleri Dergisi, 2(1):67-79 (2017).
  • [28] Shaw, M. C., “Metal Cutting Principles”, Oxford University Press, London, 1984.
  • [29] Pawade, R. S., Joshi, S. S.,. Brahmankar, P. K., Rahman, M., “An investigation of cutting forces and surface damage in high speed turning of Inconel 718,”, Journal of Materials Processing Technology, 192-193:139-146 (2007).
  • [30] Prasad, B. S., Babu, M. P., “Correlation between vibration amplitude and tool wear in turning: Numerical and experimental analysis, ”Engineering Science and Technology, an International Journal, 20:197-211 (2017).
  • [31] Kayhan, M., Budak, E., “An experimental investigation of chatter effects on tool life”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223:1455-1463 (2009).
  • [32] Kataoka, R., Shamoto, E., “Influence of vibration in cutting on tool flank wear: fundamental study by conducting a cutting experiment with forced vibration in the depth-of-cut direction”, Precision Engineering, 55:322-329 (2019).