Adaptif Hız Kontrol (AHK) Sistemindeki Mesafe Kontrol Sisteminin Sabit Mesafe Ve Sabit Zaman Yöntemleriyle Uygulamalı Olarak Karşılaştırılması

Bu çalışmada AHK sistemindeki mesafe kontrol sistemi farklı iki kontrolcü ile test edilmiştir. İlk kontrolcü mesafe kontrolünü PD algoritmasıyla araçlar arasındaki mesafeyi sabit tutmaya çalışarak sağlamıştır. İkinci kontrolcü ise Sabit Zaman Algoritması (SZA) ile mesafe kontrolünü araçlar arasındaki süreyi sabit tutmaya çalışarak sağlamıştır. MATLAB/Simulink programıyla yapılan simülasyonlar sonucunda çıkan sonuçlara göre PD algoritması ile yapılan mesafe kontrolü daha az hata ile daha konforlu geçişler sağlarken; SZA algoritması ile yapılan mesafe kontrolü daha çok hata ile daha keskin geçişler sağlamıştır. Sonuç olarak PD algoritması ile donatılan AHK sistemi daha güvenli ve konforlu bir sürüş sağlayabilir.

Comparison of A Distance Controller Design Via Constant Distance And Constant Time Gap (CTG) Methods In An Adaptive Cruise Control (ACC) System

In this study, the distance control system of the ACC system was tested via two different controllers. The first controller is the PD controller which tries to keep the distance between vehicles according to the reference distance. Moreover, the second controller is the CTG controller which tries to keep the time gap between vehicles according to the reference time gap. The simulations were done via MATLAB/Simulink. Results show that the PD controller provided smoother transitions with less error however, the CTG controller provided sharper transitions with more error. Therefore, the ACC system which was developed with the PD controller could be much safer and comfortable than the CTG controller.

___

  • [1] Thierry P., Kassaagi M. and Brissart G. "Active Safety Experiments with Common Drivers for the Specification of Active Safety Systems", 2001-06-0004.Society of Automotive Engineers, (2001).
  • [2] Tapani A. "Traffic simulation modelling of driver assistance systems". Advances in Transportation Studies an international Journal, Section A 23: (2011).
  • [3] Rajamani R. "Vehicle Dynamics & Control". New York, USA: Springer, (2006).
  • [4] Bauer H. "Automotive Handbook: 7th Edition". Chichester, England: Wiley. Robert Bosch GmbH, (2007).
  • [5] Ali Z., Popov A. and Charles G. "Model predictive control with constraints for a nonlinear adaptive cruise control vehicle model in transition manoeuvres". Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 51:6, 943-963, (2013).
  • [6] Bauer H. "AHK Adaptive Cruise Control". Robert Bosch GmbH, (2003).
  • [7] Xiong H. and Boyle L. "Drivers’ Adaptation to Adaptive Cruise Control: Examination of Automatic and Manual Braking". IEEE Transactions on Intelligent Transportation Systems, 13(3): (2012).
  • [8] Tapani A. "Vehicle Trajectory Effects of Adaptive Cruise Control", Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 16:1, 36-44, (2012).
  • [9] Wang J., Zhang L., Zhang D. and Li K. "An Adaptive Longitudinal Driving Assistance System Based on Driver Characteristics". IEEE Transactions on Intelligent Transportation Systems, 14(1), (2013).
  • [10] Milanes V., Shladover S., Spring J., Nowakowski C., Kawazoe H. and Nakamura M. "Cooperative Adaptive Cruise Control in Real Traffic Situations". IEEE Transactions on Intelligent Transportation Systems, 15(1): (2014).
  • [11] Franklin G., Powel J. and Naeini A. "Feedback Control of Dynamic Systems", Pearson, (2006).
  • [12] Moon S. and Yi K. "Human driving data-based design of a vehicle adaptive cruise control algorithm". Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 46(8): 661-690, (2008).
  • [13] Lee D., McGehee V., Brown L. and Reyes L. "Collision warning timing, driver distraction, and driver response to imminent rear-end collisions in a high-fidelity driving simulator". Human Factors, 44: 314–335, (2002).
  • [14] Itoh M., Horikome T. and Inagaki T. "Effectiveness and driver acceptance of a semi- autonomous forward obstacle collision avoidance system". In Proceedings of the Human Factors and Ergonomics Society 54th annual meeting (pp. 2091-2095). Santa Monica, CA, (2010).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ