İklim Duyarlı Kentsel Tasarım İlkeleri: Erzurum Kenti Örneği

Ülkemizde son yıllarda iklime duyarlı ve sürdürülebilir kentsel gelişmeye yönelik farkındalığın artmasına rağmen, bu süreci kararlı, esnek ve yerel ölçekte yöneten çok az sayıda strateji bulunmaktadır. İklim koşullarına duyarlı bir planlama yaklaşımı, diğer iklim tiplerinde olduğu gibi soğuk iklim bölgeleri için de tasarım sürecine iklim bilgisinin etkili bir şekilde dâhil edilmesini gerektirmektedir. Soğuk iklim bölgelerindeki kış koşulları, açık alan tasarımı ve dış mekân konforu açısından oldukça zorlayıcı durumlar yaratmaktadır. Bu zorlayıcı koşullar kış kentleri olarak adlandırabileceğimiz kentler için iklim duyarlı tasarım ilkelerini ve diğer uygulama araçlarını zorunlu kılmaktadır. Soğuk iklim koşulları altındaki kentsel alanlarda yaşam kalitesi, bu tür bir planlama yaklaşımının geliştirilip geliştirilmemesine bağlı olarak olumlu veya olumsuz etkilenebilmektedir. Bu bilgiler ışığında çalışmada Türkiye’nin en soğuk iklimlerinden birine sahip olan Erzurum kentinde, kentsel planlama pratiklerinin mikro iklimi nasıl etkilediği açıklanmaya çalışılmıştır. Bu doğrultuda seçilmiş bir kentsel doku üzerinden yürütülen çalışmada, 2018–2019 yıllarında kentte 2 metreden kaydedilen meteorolojik verilerle toplam 32 iklim simülasyonu yapılmış ve mikro ölçekte kentin termal konfor durumu değerlendirilmiştir. Simülasyonlar ve termal konfor hesaplamaları için son yıllarda tercih edilen ENVI-met mikro iklim modeli kullanılmıştır. Oluşturulan varyasyonlar ile kış döneminde hava ve yüzey sıcaklıkları üzerindeki değişim incelenmiştir. Bulgular kentin özellikle kış döneminde aşırı soğuk stres altında olduğunu göstermiştir. Simülasyonlara dayalı olarak oluşturulan yere özgü iklim duyarlı tasarım ilkeleri ve yazından elde edilen teorik bilgilerin bütüncül olarak kullanımıyla, dış mekân konforunu kış aylarında 2°C’ye kadar arttırılabileceği tespit edilmiştir. Bu çalışmada elde edilen sonuçlar yerel yönetimlerin ve tasarımcıların gelecekte benzer mahallelerde simüle edilmiş önlemlerin etkisini tahmin etmelerini sağlayarak iklim duyarlı planlama alanındaki bilgi birikimlerine katkıda bulunacaktır.

Climate Sensitive Urban Design Principles: The Case of Erzurum City

In the last decade, the awareness of climate sensitive and sustainable urban development is increased in Turkey. However, there are very few strategies managing this process at a stable, flexible and local scale. A climate-sensitive urban planning approach is the main strategy in this process requiring the effective integration of climate information into the design process especially for cold climate conditions as for all other climate zones. Since, the harsh winter conditions of cold climate cities create very challenging conditions in terms of outdoor design and outdoor comfort. It also directly affects the quality of life. These challenging conditions make cold climate-sensitive urban design principles and other application tools essential for winter cities. By this way, it is possible to positively change the effects of weather on the quality of life. In the light of this information, the effects of urban planning practices on microclimate of Erzurum as one of the coldest climate cities in Turkey are explained within the scope of this study. Accordingly, the analyses are conducted on four selected settlement patterns in the city within 2018–2019. The meteorological data of these settlements was obtained from the record taken from approximately 2 meters high from ground. Then, 32 climate simulations were made for these four different study areas. Additionally, thermal comfort level of the city was also evaluated at micro-scale, through these case areas. For the simulations and evaluations of thermal comfort, ENVI-met micro climatic model was used. Changes on air and surface temperatures during the winter period were investigated within the variations of design parameters. The findings show that the city is under extreme cold stress, especially in winter. It has been confirmed that urban design projects can increase outdoor comfort up to 2°C in winter. The design principles used in the projects are based on the principle of location-specific climate-sensitive urban design principles produced within the results of simulations and theoretical knowledge obtained from literature. The results of this study will contribute to the knowledge of local governments and designers. It enables them to predict the impacts of simulated design parameters in similar districts.

___

  • Ali-Toudert, F., & Mayer, H. (2007). Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Solar Energy, (81), 742–754. https://doi.org/10.1016/j.solener.2006.10.007
  • Bruse, M., & Fleer, H. (1998). Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling and Software, 13, 373–384. https://doi.org/10.1016/ S1364-8152(98)00042-5
  • Chow, W. T. L., Pope, R. L., Martin, C. A., & Brazel, A. J. (2011). Observing and modeling the nocturnal park cool island of an arid city: horizontal and vertical impacts. Theoretical and Applied Climatology, 103(1), 197–211. https://doi.org/10.1007/s00704-010-0293-8
  • De, B., & Mukherjee, M. (2016). Impact of Canyon Design on Thermal Comfort in Warm Humid Cities: A Case of Rajarhat- Newtown, Kolkata. Fourth International Conference on Countermeasure to Urban Heat Island, 2016, ( June), 30–31.
  • Dursun, D., & Yavas, M. (2016). Urbanization and the Use of Climate Knowledge in Erzurum, Turkey. Procedia Engineering, 169. https://doi. org/10.1016/j.proeng.2016.10.040
  • Ebrahimabadi, S. (2012). Improvements in Addressing Cold Climate Factors in Urban Planning and Design. Lulea University of Technology.
  • Emmanuel, R. (2005). Thermal comfort implications of urbanization in a warm-humid city: the Colombo Metropolitan Region (CMR), Sri Lanka. Building and Environment, 40(12), 1591–1601. https://doi.org/https:// doi.org/10.1016/j.buildenv.2004.12.004
  • Golany, G. S. (1996). Urban design morphology and thermal performance. Atmospheric Environment, 30(3), 455–465. https://doi.org/10.1016/1352- 2310(95)00266-9
  • Kleerekoper, L. (2016). Urban climate design: Improving thermal comfort in Dutch neighbourhoods (Delft University of Technology; Vol. 11). https:// doi.org/10.7480/abe.2016.11
  • Krüger, E. L., Minella, F. O., & Rasia, F. (2011). Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil. Building and Environment, 46, 621–634. https://doi. org/10.1016/j.buildenv.2010.09.006
  • Maggiotto, G., Buccolieri, R., Santo, M. A., Leo, L. S., & Di Sabatino, S. (2014). Study of the Urban Heat Island in Lecce (Italy) by means of ADMS and ENVI-MET. International Journal of Environment and Pollution.
  • Mills, G. (1999). Urban climatology and urban design. ICB-ICUC, 99, 15th.
  • Mutlu, E., Yılmaz, S., Yılmaz, H., & Mutlu, B. (2018). Analysis of Urban Settlement Unit By Envi-Met According To Different Aspects In Cold Regions. 6th Annual International Conference on Architecture and Civil Engineering, 519. Singapore.
  • Ng, E., Chen, L., Wang, Y., & Yuan, C. (2012). A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Building and Environment, 47, 256–271. https://doi.org/10.1016/j.buildenv.2011.07.014
  • Pressman, N. (1995). Urban design: The northern dimension. In C. Charette (Ed.), Issues in Canadian Urban Design (pp. 221–267). Institute of Urban Studies.
  • Pressman, N. (2004). Shaping Cities for Winter. Climatic Comfort and Sustainable Design. Prince George, Winter Cities Associatio (ISBN 0-9698761-1-4). In Cahiers de géographie du Québec (Vol. 48). https:// doi.org/10.7202/011810ar
  • Scherer, D., Fehrenbach, U., Beha, H. D., & Parlow, E. (1999). Improved concepts and methods in analysis and evaluation of the urban climate for optimizing urban planning processes. Atmospheric Environment, 33 (24–25), 4185–4193. https://doi.org/10.1016/S1352-2310(99)00161-2.
  • Taleghani, M., Kleerekoper, L., Tenpierik, M., & Van Den Dobbelsteen, A. (2015). Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment, 83, 65–78.
  • Toy S., Yilmaz S. and Yilmaz, H. (2007). Determination of bioclimatic comfort in three different land uses in the city of Erzurum, Turkey, Building and Environment, 42(3),1315-1318.
  • Tsoka, S., Tsikaloudaki, A., & Theodosiou, T. (2018). Analyzing the ENVImet microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 43, 55–76. https://doi.org/10.1016/j.scs.2018.08.009.
  • Victor,O. (1963). Design with climate: Bioclimatic approach to architectural regionalism. In Climate Responsive Building. New Jersey: Princeton University Press.
  • Winter City of Edmonton. (2013). For the love of winter: WinterCity Strategy implementationplan.1–52.Retrievedfrom https://www.edmonton.ca/ city_government/initiatives_innovation/wintercity-strategy.aspx
  • Yavaş, M. (2019). İklim Duyarlı Kent Planlama Stratejileri: Erzurum Kenti Örneği. Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü.
  • Yilmaz, S., Mutlu, E., & Yilmaz, H. (2018). Alternative scenarios for ecological urbanizations using ENVI-met model. Environmental Science and Pollution Research, 25 (26), 26307–26321. https://doi.org/10.1007/s11356- 018-2590-1.
  • Yilmaz S.,Mutlu E.,Yılmaz H., (2018a). Quantification of thermal comfort based on different street orientation in winter months of urban city Dadaşkent. DOİ: 10.17660/ActaHortic.2018.1215.12, EdsG. Pennisi, L. Cremonini, T. Georgiadis, F. Orsini, G.P. Gianquinto, ISBN: 978-94- 62612-12-9, ISSN: 0567-7572 (print) 2406-6168 (electronic), Acta Horticulturae, 1215: 67-72
  • Yılmaz, S. vd: (2018b). Soğuk Kentlerde İklim Parametrelerinin Termal Konfora Etkisi: Erzurum Kenti. TÜBİTAK Projesi 215O627, 4 Ekim 2018 tamamlandı, Erzurum.