Farklı Sokak Kanyonlarında Rüzgârın Hava Kirliliği Dağılımı Üzerindeki Etkisi: Erzurum Örneği

Kentlerde nüfusunun hızla artması, çevre sorunlarının çeşitlenmesine ve yeni boyut kazanmasına yol açmaktadır. Özellikle kış aylarında artış gösteren hava kirliliği kentlerde yaşanabilirlik açısından dış mekân konforunu olumsuz yönde etkilemektedir. Bu çalışmanın amacı, farklı özelliklerdeki sokak kanyonlarında rüzgârın hareketi, ağaçların varlığı ve bunların hava kirliliğinin dağılımına etkisini analiz ederek, sokak ölçeğinde yayalar için daha konforlu tasarım kriterlerini belirlemektir. 2018 yılı hava kirliliği verilerinin analizinde ve haritalamasında ArcGIS 10.3 Spatial Analysis Modülündeki Interpolation yöntemi kullanılarak, Erzurum kenti için hava kirliliğinin mekânsal analizi haritalandırılmıştır. Oluşturulan hava kirliliği haritasında, kirliliğin yoğun ve az yoğun olduğu mevcut mekânlardan, ağaçlı ve ağaçsız olmak üzere dört farklı sokak kanyonu belirlenmiştir. Belirlenen sokak kanyonlarının analizinde Sayısal Akışkanlar Dinamiği (CFD) ANYSY 16.0 bilgisayar programı kullanılmıştır. Sokak analizleri, rüzgâr akış hızı, bina çatısı, ağaçlar ve yaya seviyesine göre karşılaştırılmış, yaya seviyesinde daha düşük olduğu belirlenmiştir. Hava kirliliğinin az olduğu sokaklarda; ağaçsız sokakta %23, ağaçlı sokakta %25 rüzgâr hızında düşüş olduğu hesaplanmıştır. Hava kirliliğinin yüksek olduğu sokaklarda; ağaçsız sokak %29 ve ağaçlı sokak da %57 oranında rüzgâr hızında azalma olduğu saptanmıştır. Sonuç olarak, sokak kanyonları özelliklerine göre rüzgârın yönünü ve hızını etkileyerek, hava kirliliğinin dağılımında önemli rol aldığı belirlenmiştir. Sokağın hakim rüzgâr yönüne paralel olması ve rüzgârı engelsiz olarak alması hava kirliliğinin dağılmasında iyileştirici bir etken olarak görülmüştür. Dar sokak kanyonlarında ise ağaçların kullanılmasının rüzgâr hızını engellediği saptanmıştır. Ayrıca, binalar arası mesafesi az olan ve dar kanyon özelliği gösteren sokaklarda ise hava kirliliğinin daha fazla yoğunlaştığı belirlenmiştir. Geniş sokak kanyonlarının ağaçlandırılmasında rüzgârın hızını kesmeyen, yüksekten dallanan ve geçirgen dokuya sahip olan ağaç türlerinin tercih edilmesi gerektiği vurgulanmıştır. Alanın doğal özellikleri dikkate alınarak tasarlanacak sokakların yaya dostu ve daha yaşanabilir mekânlar olacağı vurgulanmıştır

The Effect on Air Pollution Distribution of Wind in Different Street Canyons: The Case of Erzurum

The rapid increase in the population of cities leads to the diversification and new dimensions of environmental problems. Air pollution, which increases especially in winter, negatively affects outdoor comfort in terms of liveability in cities. The aim of this study is to analyze the movement of wind, the presence of trees and their effect on the distribution of air pollution in street canyons with different characteristics and to determine more comfortable design criteria for pedestrians at street scale. Air pollution data for 2018 were analyzed using the Interpolation method in ArcGIS 10.3 Spatial Analysis Module. Erzurum air pollution spatial analysis map was produced. According to the spatial analysis map of air pollution, four different street canyons, with and without trees, were randomly selected from the streets where the pollution is intense and less intense. Computational Fluid Dynamics (CFD) ANYSY 16.0 software program was used in the analysis of the determined street canyons. Street analysis was compared according to wind flow velocity, building roof, trees and pedestrian level, and it was found to be lower at pedestrian level. In the streets with less air pollution, it has been calculated that there is 23% decrease in wind speed in treeless streets and 25% in tree-lined streets. In the streets with high air pollution; It was determined that there was a decrease in wind speed by 29% in the treeless street and 57% in the tree-lined street. As a result, it has been determined that street canyons play an important role in the distribution of air pollution by affecting the direction and speed of the wind according to their characteristics. The fact that the street is parallel to the prevailing wind direction and that it receives the wind unimpeded has been seen as a healing factor in the dispersion of air pollution. It has been determined that the use of trees in narrow street canyons reduces wind speed. In addition, it has been determined that the air pollution is more intense in the streets with narrow canyon characteristics with less distance between buildings. It was emphasized that tree species that do not slow down the wind speed, for example species with high branches and a permeable texture should be preferred in the afforestation of wide street canyons. It was emphasized that if the streets are designed considering the natural characteristics of the area, they will be pedestrian friendly and more liveable places.

___

  • Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, 70(3), 295–310.
  • Ali-Toudert,F., Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41, 94-108.
  • Akkar E. M., & Belge, Z. S. (2017). Daha yaşanabilir kentler için mikro ölçek bir yürünebilirlik modeli. Metu Journal of the Faculty of Architecture, 34(1), 231–265. https://doi.org/10.4305/METU.JFA.2016.2.11.
  • Aksu, A., Yılmaz, S., Mutlu, B.E, Yılmaz, H. (2020). Ağaçların Bina ile Olan Mesafesinin Dış Mekan Termal Konfor Üzerine Etkisi: Erzurum Kenti Örneği. Iğdır Üni. Fen Bilimleri Enstitüsü Dergisi, 10 (2), 1298-1307, DOI: 10.21597/jist.635503.
  • Algeciras, J. A. R., Consuegra, L. G., & Matzarakis, A. (2016). Spatial-temporal study on the effects of urban street configurations on human thermal comfort in the world heritage city of Camagüey-Cuba. Building and Environment, 101, 85-101.
  • Balczó, M., Gromke, C., & Ruck, B. (2009). Numerical modeling of flow and pollutant dispersion in street canyons with tree planting. Meteorologische Zeitschrift, 18(2), 197–206.
  • Balogun, A. A., Tomlin, A. S., Wood, C. R., Barlow, J. F., Belcher, S. E., Smalley, R. J., Robins, A. G. (2010). In-street wind direction variability in the vicinity of a busy intersection in central London. Boundary-Layer Meteorology, 136 (3), 489-513.
  • Berardi, U., GhaffarianHoseini, A., & GhaffarianHoseini, A. (2014). Stateof- the-art analysis of the environmental benefits of green roofs. Applied Energy, 115, 411-428.
  • Bendida, M.,Djellouli A., Hamidat D., Bouzit, M., (2019). Structure of the out- flows behind buildings and Influence of the geometry of the streets on the out-flows. Journal of Materials and Engineering Structures, 6, 375-382.
  • Buccolieri, R., Sandberg, M., & Di Sabatino, S. (2010). City breathability and its link to pollutant concentration distribution within urban-like geometries. Atmospheric Environment, 44(15), 1894-1903. https://doi. org/10.1016/j.atmosenv.
  • Canan, F. (2017). Kent geometrisine bağlı olarak kentsel ısı adası etkisinin belirlenmesi: Konya örneği. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(3), 69-80. https://doi.org/10.21605/cukurovaummfd. 357202.
  • Chen, L., Ng, E., An, X., Ren, C., Lee, M., Wang, U., He, Z. (2012). Sky view factor analysis of street canyons and its implications for daytime air temperature differentials in high-rise, high-density urban areas of Hong Kong: a GIS-based simulation approach. International Journal of Climatology, 32(1), 121-136.
  • Clark, L. P., Millet, D. B., & Marshall, J. D. (2011). Air quality and urban form in U.S. urban areas: Evidence from regulatory monitors. Environmental Science and Technology, 46 (16), 7028–7035, https://doi.org/10.1021/ es2006786.
  • DePaul, F. T., & Sheih, C. M. (1986). Measurements of wind velocities in a street canyon. Atmospheric Environment (1967), 20(3), 455–459.
  • Dursun, D. & Yavaş, M., 2017. Soğuk iklime duyarlı kentsel tasarım yaklaşımları, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi,7(2), 269-278.
  • Eskridge, R. E., & Rao, S. T. (1986). Turbulent diffusion behind vehicles: experimentally determined turbulence mixing parameters. Atmospheric Environment, 20(5), 851-860.
  • Fu, X., Liu, J., Ban-Weiss, G. A., Zhang, J., Huang, X., Ouyang, B., Tao, S. (2017). Effects of canyon geometry on the distribution of traffic-related air pollution in a large urban area: Implications of a multi-canyon air pollution dispersion model. Atmospheric Environment, 165, 111-121. https://doi.org/10.1016/j.atmosenv.2017.06.031.
  • Gallagher, J., Baldauf, R., Fuller, C. H., Kumar, P., Gill, L. W., & Mcnabola, A. (2015). Passive methods for improving air quality in the built environment : A review of porous and solid barriers. Atmospheric Environment, 120, 61–70. https://doi.org/10.1016/j.atmosenv.2015.08.075.
  • Gromke, C., & Blocken, B. (2015). Influence of avenue-trees on air quality at the urban neighborhood scale. Part II: Traffic pollutant concentrations at pedestrian level. Environmental Pollution, 196, 176–184. https://doi. org/10.1016/j.envpol.2014.10.015.
  • Gültekin, N.T. (2005). Geleneksel Kentsel Konut, and Dokusunun Yeniden Kazanımı. Gazi Üniversitesi Şehir ve Bölge Planlama Bölümü (Yazar), Şehircilik Çalışmaları, Nobel Yayın Dağıtım.(S. 385.). Ankara.
  • Hang, J., Sandberg, M., Li, Y., & Claesson, L. (2009). Pollutant dispersion in idealized city models with different urban morphologies. Atmospheric Environment, 43(38), 6011-6025. https://doi.org/10.1016/j.atmosenv. 2009.08.029.
  • He, L., Hang, J., Wang, X., Lin, B., Li, X., & Lan, G. (2017). Numerical investigations of flow and passive pollutant exposure in high-rise deep street canyons with various street aspect ratios and viaduct settings. Science of the Total Environment, 584, 189–206.
  • Hunter, L. J., & Wales, N. S. (1992). An investigation of three-dimensi onal characteristics of flow regimes within the urban canyon. Atmospheric Environment. Part B. Urban Atmosphere, 26(4), 425-432.
  • Janhäll, S. (2015). Review on urban vegetation and particle air pollution - Deposition and dispersion. Atmospheric Environment, 105, 130–137. https://doi.org/10.1016/j.atmosenv.2015.01.052.
  • Jeanjean, A. P. R., Monks, P. S., & Leigh, R. J. (2016). Modelling the effectiveness of urban trees and grass on PM2.5reduction via dispersion and deposition at a city scale. Atmospheric Environment, 147, 1–10. https:// doi.org/10.1016/j.atmosenv.2016.09.033.
  • Ketterer, C., & Matzarakis, A. (2016). Mapping the Physiologically Equivalent Temperature in urban areas using artificial neural network. Landscape and Urban Planning, 150, 1-9. https://doi.org/10.1016/j.landurbplan. 2016.02.010.
  • Klein, P., Leitl, B., & Schatzmann, M. (2007). Driving physical mechanisms of flow and dispersion in urban canopies. International Journal of Climatology. A Journal of the Royal Meteorological Society, 27(14), 1887–1907.
  • Klemm, K., Heim, D., (2009). Local Wind and Rain Conditions in Semi-Closed Narrow Corridors Between Buildings. Eleventh International IBPSA Conference, July 27-30, Glasgow, Scotland.
  • Kopar, İ., Zengin,M.(2009).Coğrafi faktörlere bağlı olarak erzurum kentinde hava kalitesinin zamansal ve mekânsal değişiminin belirlenmesi.Türk Coğrafya Dergisi, 53, 51-58.
  • Koşan, Z., Kavuncuoğlu, D, Çalıkoğlu, E., Bilge Yerli, E. (2018). Evaluation of air pollution by PM10 and SO2 levels in Erzurum province, Turkey: Descriptive study. Journal of Surgery and Medicine, 2 (3), 265-268. DOI: 10.28982/josam.422921.
  • Lee, H., Mayer, H., & Kuttler, W. (2020). Impact of the spacing between tree crowns on the mitigation of daytime heat stress for pedestrians inside EW urban street canyons under Central European conditions. Urban Forestry & Urban Greening, 48, 126558.
  • Li, C., Wang, Z., Li, B., Peng, Z.-R., & Fu, Q. (2019). Investigating the relationship between air pollution variation and urban form. Building and Environment, 147, 559-568, https://doi.org/10.1016/j.buildenv. 2018.06.038.
  • Li, G., Ren, Z., & Zhan, C. (2020). Sky View Factor-based correlation of landscape morphology and the thermal environment of street canyons: A case study of Harbin, China. Building and Environment, 169, 106587.
  • Lu, C., & Liu, Y. (2016). Effects of China’s urban form on urban air quality. Urban Studies, 53(12), 2607-2623. https://doi.org/10.1177/ 0042098015594080.
  • Matzarakis, A., Matuschek, O. (2011). Sky View Factor as a parameter in applied climatology–Rapid estimation by the Sky Helios Model. Meteorologische Zeitschrift, 20(1), 39-45.
  • Ma X, Wang M, Zhao J, Zhang L, Liu W (2020). Performance of different urban design parameters in ımproving outdoor thermal comfort and health in a pedestrianized zone. Int J Environ Res Public Health, 17(2258), 2-19. https://doi.org/10.3390/ijerph17072258.
  • MGM, (2018) Turkish State Meteorological Service (MGM). https://www. mgm.gov.tr/. Data of Ministry of Agriculture and Forestry, General Directorate of Meteorology, Ankara.
  • Mutlu, E., Yilmaz S., Yilmaz H., Mutlu B.E. (2018). Analysis of urban settlement unit by ENVI-met according to different aspects in cold regions. 6th annual international Conference on Architecture and Civil Engineering (ACE 2018), oral presentation, 14-15 May 2018, Singapore.
  • Neofytou, P., Venetsanos, A. G., Rafailidis, S., & Bartzis, J. G. (2006). Numerical investigation of the pollution dispersion in an urban street canyon. Environmental Modelling and Software, 21(4), 525-531. https://doi. org/10.1016/j.envsoft.2004.08.012.
  • Nosek, Š., Fuka, V., Kukačka, L., Kluková, Z., & Jaňour, Z. (2018). Streetcanyon pollution with respect to urban-array complexity: The role of lateral and mean pollution fluxes. Building and Environment, 138, 221-234.
  • Oke, T. R. (1988). Street design and urban canopy layer climate. Energy and Buildings, 11(1-3), 103-113.
  • Öztürk, MZ, Çetinkaya G, Aydın S. (2017) Köppen-Geiger iklim sınıflandırmasına göre Türkiye’nin iklim tipleri. Coğrafya Dergisi, 35,17-27.
  • Pugh, T. A. M., MacKenzie, A. R., Whyatt, J. D., & Hewitt, C. N. (2012). Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environmental Science & Technology, 46(14), 7692-7699.
  • Partigöç, N. S., & Çubukçu, K. M. (2017). Hava kirliliği ve kent ilişkisine ampirik bakış: ekolojik sürdürülebilirlik ekseninde bir değerlendirme. Akademia Disiplinlerarası Bilimsel Araştırmalar Dergisi, 3(2), 28-45.
  • Qaid A, Ossen DR (2015). Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. International Journal Biometeorology, 59(6), 657- 677.
  • Qaid, A., Lamit, H. Bin, Ossen, D. R., & Rasidi, M. H. (2017). Effect of the position of the visible sky in determining the sky view factor on micrometeorological and human thermal comfort conditions in urban street canyons. Theoretical and Applied Climatology. https://doi.org/10.1007/ s00704-016-2023.
  • Salim, S. M., Buccolieri, R., Chan, A., Di Sabatino, S., & Cheaha, S. C. (2011). Large Eddy Simulation of the aerodynamic effects of trees on pollutant concentrations in street canyons. Procedia Environmental Sciences, 4(19), 17-24.
  • Salim, Salim Mohamed, Buccolieri, R., Chan, A., & Di Sabatino, S. (2011). Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES. Journal of Wind Engineering and Industrial Aerodynamics, 99(2-3), 103-113. https:// doi.org/10.1016/j.jweia.2010.12.002.
  • Sarı E.N., Hava Kirliliği ve Konut Dokusu Arasındaki İlişkinin Analizi: Erzurum Örneği, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi
  • Sarı E.N., Yilmaz S., (2019). Spatial comparison of air pollution over urban pattern. 9th International Symposium on Atmospheric Sciences, ITU, ATMOS2019, Oral presentation, October 23-26, 2019, Istanbul/Turkey.
  • Sarı E. N., Yılmaz S., Yılmaz B. G. 2020. Definition of pedestrian friendly street parameters and evaluation in the case of Erzurum city Pedestrians, Maurizio Tira,Michèle Pezzagno,Anna Richiedei, (Ed.), Urban Spaces and Health - Proceedings of the XXIV International Conference on Living and Walking in Cities (LWC, September 12-13, 2019, Brescia, Italy), Taylor eBookstore, (s. 55-61). London.
  • Schatzmann, M., Leitl, B., & Liedtke, J. (2000). Dispersion in urban environments; comparison of field measurements with wind tunnel results. Environmental Monitoring and Assessment, 65(1), 249-257. https://doi. org/10.1023/A:1006493319734.
  • Schindler, M., & Caruso, G. (2014). Urban compactness and the trade-off between air pollution emission and exposure: Lessons from a spatially explicit theoretical model. Computers. Environment and Urban Systems, 45, 13–23.
  • Shashua-Bar, L., & Hoffman, M. E. (2000). Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy and Buildings, 31(3), 221-235.
  • Shi Y, Xie X, Fung JCH, Ng E (2018). Identifying critical building morphological design factors of street-level air pollution dispersion in high-density built environment using mobile monitoring. Building and Environment, 128, 48–259. https://doi.org/10.1016/j.buildenv.2017.11.043.
  • Shishegar N (2013). Street Design and Urban Microclimate: Analyzing the Effects of Street Geometry and Orientation on Airflow and Solar Access in Urban Canyons", Journal of Clean Energy Technologies 1(1), 52-56. https://doi.org/10.7763/JOCET.2013.V1.13.
  • Taseiko, O. V., Mikhailuta, S. V., Pitt, A., Lezhenin, A. A., & Zakharov, Y. V. (2009). Air pollution dispersion within urban street canyons. Atmospheric Environment, 43(2), 245-252. https://doi.org/10.1016/j.atmosenv. 2008.09.076.
  • Theurer, W. (1999). Typical building arrangements for urban air pollution modelling. Atmospheric Environment, 33(24-25), 4057-4066.
  • UN., (2018). World Population Prospects 2017, United Nations DESA / Population. Divisionhttps://www.un.org/development/desa/en/news/ population/2018-revision-of-world-urbanization-prospects.html
  • Vos, P. E. J., Maiheu, B., Vankerkom, J., & Janssen, S. (2013). Improving local air quality in cities: To tree or not to tree? Environmental Pollution, 183, 113-122. https://doi.org/10.1016/j.envpol.2012.10.021.
  • Wania, A., Bruse, M., Blond, N., & Weber, C. (2012). Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations. Journal of Environmental Management, 94(1), 91-101.
  • WHO, (2005). World Health Organization, Air Quality Guidelines-global update 2005. WHO.https://apps.who.int/iris/bitstream/handle/ 10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf;jsessionid =EDEDC23411D0DD29BE3D45DC26D3FCDC?sequence=1.
  • Yavaş, M, Yilmaz S (2020). İklim duyarlı kentsel tasarım ilkeleri: Erzurum kenti örneği. Journal of Planning, 30(2), 294–312. https://doi. org/10.14744/planlama.2020.04934.
  • Yılmaz, S., Sezen, I. (2004). Erzurum Kentinde Hava Kirliliğine Karşı Halkın Duyarlılığının Belirlenmesi, Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 17(2), 199- 206.
  • Yilmaz, S., Mutlu, E., Yilmaz, H. (2018). Quantification of thermal comfort based on different street orientation in winter months of urban City Dadaşkent. Acta Horticulturae, 1215: 67-72. Doi: 10.17660/Actahortic.2018.
  • Yilmaz S, Mutlu BE, Aksu A, Mutlu E, Qaid A (2020) Street design scenarios using vegetation for sustainable thermal comfort in Erzurum, Turkey. Environmental Science and Pollution Research, https://doi.org/10.1007/ s11356-020-10555-z,inpress.
  • Yuan, C., Ng E.,Norford, L.K. (2014). Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Building and Environment, 71, 245-258.
  • Zhang, H., Xu, T., Zong, Y., Tang, H., Liu, X., & Wang, Y. (2015). Influence of meteorological conditions on pollutant dispersion in street canyon. Procedia Engineering, 121, 899-905. https://doi.org/10.1016/j.proeng. 2015.09.047.
  • Zhou, B., Lauwaet, D., Hooyberghs, H., De Ridder, K., Kropp, J. P., & Rybski, D. (2016). Assessing seasonality in the surface urban heat island of London. Journal of Applied Meteorology and Climatology, 55 (3),493–505.
  • URL- I ÇŞB, (2018). https://www.havaizleme.gov.tr, Çevre ve Şehircilik Bakanlığı, Ankara.