YEŞİL ALTYAPI BAĞLAMINDA KENTSEL AÇIK ALANLARIN OPTİMİZASYONUNA YÖNELİK PARAMETRİK BİR MODEL ÖNERİSİ

Yapılaşmış doku içerisinde bulunan kentsel açık alanlar, yeşil altyapı hiyerarşik sisteminin en alt birimlerini oluşturmaktadır. Bu mekanlara yönelik yerel verilere dayanmayan tasarım kararları, açık alanların sunması gereken potansiyellerini tam olarak ortaya koyamamasına neden olmaktadır. Halbuki söz konusu kentsel mekanların bir arada doğru ve akılcı tasarım yaklaşımları ile ele alındığında yeşil altyapı sisteminin geliştirilmesine yönelik büyük etkileri olduğu bilinmektedir. Çağdaş tasarım pratiği içerisinde yeşil altyapı gibi ekolojik tasarım yaklaşımlarına paralel olarak gelişen bir başka çalışma konusu da hesaplamalı tasarımdır. Özellikle, teknolojik gelişmelerin getirdiği parametrelere dayalı yeni tasarım metodolojileri, ekolojik anlamda daha rasyonel ve kullanışlı alanlar oluşturmamızı sağlar. Buradan hareketle araştırma, kentsel açık alanların yeşil altyapı ile olan bağını peyzajın parametrizasyonu temelinde ele almaktadır. Kentsel peyzaj bileşenlerinin parametrize edilerek tasarımda bir optimizasyon sürecinin kurgulanması hedeflenmiştir. Araştırmada, yoğun bir kentsel doku içerisinde yer alan küçük ölçekli açık alanların mikro-iklimsel, fiziksel ve alan kullanım niteliklerinin parametrize edilmesi ile yüzeyin optimizasyonuna dayalı çok katmanlı ve ilişkisel bir model önerisi sunulmaktadır. Bu model önerisi 4 aşamadan meydana gelmektedir; veri toplama ve dijitalleştirme, parametrelerin belirlenmesi, tasarım kısıtlarının tanımlanması, optimizasyon ve sonuç ürünün (mekansal tasarımın) üretilmesidir. Araştırma kapsamında İstanbul Kadıköy ilçesinde yer alan Moda Meydanı örneklem alanı olarak seçilmiştir.  Mevcut yapısı ve çevresel bağlamı temel alınarak, parametrik yöntemlerle bu alana özgü alternatif bir mekan kurgusu üretilmiştir. Ardından optimizasyon süreci içinde elde edilen tasarım varyasyonlarının mevcut durum ile karşılaştırmaları yapılmıştır. Araştırma sonucunda geliştirilen parametrik peyzaj modelinden elde edilmiş tasarım alternatifinin ekolojik performans bakımından olumlu sonuçlar verdiği gözlemlenmiştir.

A PARAMETRIC LANDSCAPE MODEL FOR URBAN OPEN SPACE OPTIMIZATION IN THE CONTEXT OF GREEN INFRASTRUCTURE

Urban open spaces within the dense built-up areas constitute the smallest units of the green infrastructure hierarchical system. Design approaches that do not rely on the local data could decrease the value of urban green space potentials and pose some challenges for their functioning. However, if these areas are considered in a holistic way with correct and rational design strategies, it is known that they have great effects on the green infrastructure enhancement.Computational design is another research area that takes attention in parallel with ecological perspectives among contemporary design practices. In particular, new design methodologies based on parameters, introduced by technological developments, enable us to construct more rational and useful spaces in an ecological sense. From this point of view, the research addresses the relations between urban open spaces with green infrastructure system on the basis of landscape computational techniques such as parametric design. This paper aims to explore the algorithmic design thinking for landscape design by generative modeling approach in urban context.  Focusing on dynamic interactions between spatial dispersion of hard-soft surfaces, shadow elements like tree locations and their impacts such as micro-climatic condition changes with human behaviors were the primary inputs of the process. Research developed as a multi-layered and relational optimization model based on micro climatic, physical and land-use qualities of small-scaled urban surfaces. Model proposal consists of 4 stages; data collection and digitization, determination of parameters, definition of design constraints, optimization and generation of the final spatial design. Within the scope of the research, Moda Square located in the district of Kadıköy in Istanbul was selected as the sample area.  Based on its current local data and environmental context, an alternative spatial configuration that specific to the area has been produced with parametric methods. Then, the design variations obtained from model during the optimization process were compared with the current situation. As a result, it was observed that the design alternative as model output, shows positive values in terms of ecological performance.

___

  • Bélanger, P. (2017). Landscape as infrastructure: a base primer: Routledge.
  • Benedict, M. A., & McMahon, E. T. (2012). Why Green Infrastructure ? In Green infrastructure: linking landscapes and communities (pp. 1-23): Island press.
  • Carmona, M., Heath, T., Oc, T., & Tiesdell, S. (2012). Public places-Urban spaces: Routledge.
  • Charles, W. (2006). Landscape as Urbanism. In C. Waldheim (Ed.), Landscape Urbanism Reader (pp. 35-53). New York: C. Waldheim (red.). Princeton Architectural Press, Canada.
  • Corner, J. (2006). Terra fluxus. In C. Waldheim (Ed.), Landscape Urbanism Reader (pp. 21-33). New York: C. Waldheim (red.). Princeton Architectural Press, Canada.
  • Çubuk, M. (1991). Kentsel Tasarım ve Kamu Alanları. Paper presented at the Kamu Mekanları Tasarımı ve Kent Mobilyaları Sempozyumu, İstanbul.
  • Enerji Enstitüsü. (2011). İstanbul Güneş Enerjisi Potansiyeli ve Güneşlenme Süresi. . Retrieved from https://enerjienstitusu.org/2011/01/04/istanbul-gunes-enerjisi-potansiyeli-ve-guneslenme-suresi/
  • Jabi, W. (2013). Parametric design for architecture: Laurence King Publ.
  • Kalay, Y. (1987). Computability of design.
  • Mell, I. C. (2009). Can green infrastructure promote urban sustainability? Paper presented at the Proceedings of the Institution of Civil Engineers-Engineering Sustainability.
  • MGM (2017). Türkiye Ortalama Güneşlenme Süresi (1988-2017). Retrieved from https://www.mgm.gov.tr/kurumici/turkiye-guneslenme-suresi.aspx
  • Natural England. (2009). Natural England’s green infrastructure guidance. In: Sheffield: Natural England.
  • Olsson, H. (2012). Integrated Green Spaces in Urban Areas.
  • Oxman, R. (2008). Performance-based design: current practices and research issues. International journal of architectural computing, 6(1), 1-17.
  • Rakhshandehroo, M., Afshin, S., & Mohd Yusof, M. J. (2017, November 2017). Terminology of Urban Open and Green Spaces. Paper presented at the 11th ASEAN Postgraduate Seminar, APGS 2017, University of Malaya, Malaysia.
  • Sandstro¨ m, U. G. (2002). Green infrastructure planning in urban Sweden. Planning practice and research, 17(4), 373-385.
  • Seydanoğlu, A., & Turgut, S. (2017). Türkiye Kentleri İçin Kentsel Büyüme Yönetimi Sistemi ve İstanbul Örneği. Megaron, 12(3), 429-442.
  • Stavric, M., & Marina, O. (2011). Parametric modeling for advanced architecture. International journal of applied mathematics informatics, 5(1), 9-16.
  • Swanwick, C., Dunnett, N., & Woolley, H. (2003). Nature, role and value of green space in towns and cities: An overview. Built Environment (1978-), 94-106. United Nations, Department of Economic and Social Affairs, Population Division (2018). The World’s Cities in 2018—Data Booklet (ST/ESA/ SER.A/417). Retrieved from https://www.un.org/en/events/citiesday/assets/pdf/the_worlds_cities_in_2018_data_booklet.pdf
  • Walliss, J., & Rahmann, H. (2016). Performative Systems. In J. Walliss & H. Rahmann (Eds.), Landscape architecture and digital technologies: Re-conceptualising design and making (pp. 45-102): Routledge.
  • Williams, R. (2017). Infrastructure as Lived Experience. In P. Bélanger (Ed.), Landscape as Infrasturcture : a base primer. Newyork: Routledge.
  • Url-1 , erişim tarihi 17.06.2020
  • Url-2 , erişim tarihi 17.06.2020
  • Url-3 , erişim tarihi 17.06.2020