Teachers’ and students’ views on using augmented reality environments in physics education: 11th grade magnetism topic example

Bu çalışmanın amacı, fizik öğretmenleri ve bu dersi alan öğrencilerin AG ortamının manyetizma konusunun öğretiminde kullanılmasına ilişkin görüşlerini ortaya koymaktır. Nitel araştırma tekniklerinden biri olan odak grup görüşmesi tekniğinin kullanıldığı bu araştırmada veri toplama yöntemi olarak yarı yapılandırılmış mülakat tekniği kullanılmıştır. Araştırma bünyesinde hazırlanan soruları cevaplandırmak amacıyla Trabzon ilinde bulunan fizik öğretmenlerinden üç fizik öğretmeni ve öğretmen lisesindeki 8 öğrenci ile odak grup görüşmesi 2010-2011 eğitim-öğretim yılında yapılmıştır. Araştırma sonucunda elde edilen bulgulara göre öğretmenler; artırılmış gerçeklik ortamlarının fiziği özellikle de manyetizmayı öğretmek adına manyetik alanın görselleştirilmesi ve somutlaştırılmasında yararlar sağlayabileceğini belirtmişlerdir. Öğrenciler ise; artırılmış gerçeklik ortamının olayları daha iyi anlamalarına ve kavramalarına yardımcı olduğu, bu ortamın uygulamalarda daha gerçekçi bir ortam sunduğu, görselliği şekillendirdiği, kavramları somutlaştırması ile ön plana çıktığını ifade etmişlerdir. Bu sonuçlara göre anlaşılması ve görselleştirilmesi zor olan diğer konular için de artırılmış gerçeklik ortamları tasarlanması önerilebilir.

Fizik öğretiminde artırılmış gerçeklik ortamlarının kullanımlarına ilişkin öğretmen ve öğrenci görüşleri: 11. sınıf manyetizma konusu örneği

The aim of this study was to evaluate the opinions of students in learning physics and physics teachers in teaching physics during using augmented reality environments. In this study, focus group interview technique was used as a qualitative research technique. Semi-structured interview technique was used as a method of data collection. This study was executed with three physic teachers and 8 students of a secondary school at Trabzon in 2010-2011 school years. As a result, using augmented reality in teaching magnetism has benefits on behalf of the magnetic field by providing the visualization. In learning side, it helps the student for better understanding the events of the environment and make able to have more better realistic application. Through the obtained results, it is suggested that augmented reality should be used in other subjects of science which are difficult to comprehend.

___

  • Akdeniz, A. R., Çepni, S. & Azar A. (1998). Fizik öğretmen adaylarının laboratuar kulanım becerilerini geliştirmek için bir yaklaşım. III. Ulusal Fen Bilimleri Eğitimi Sempozyumu, Karadeniz Teknik Üniversitesi, Trabzon.
  • Alouf, J. L. & Bentley, M. L. (2003). Assessing the impact of inquiry-based science teaching in professional development activities, PK-12, Paper presented at the Annual Meeting of the Association of Teacher Educators, Jacksonville, Florida.
  • Ayas, A., Akdeniz, A.R. & Çepni, S. (1994). Fen bilimlerinde laboratuvarın yeri ve önemi-I. Çağdaş Eğitim, 19, 21-25.
  • Bagno, E. & Eylon, B.S. (1997). From problem solving to knowledge structure: an example from the domain of electromagnetism. American Journal of Physics, 65 (8), 726-736.
  • Böyük U., Demir, S. & Erol, M. (2010). Fen ve teknolojileri dersi öğretmenlerinin laboratuar çalışmalarına yönelik görüşlerinin farklı değişkenlere göre incelenmesi. TUBAV Bilim Dergisi, 3(4), 342-349.
  • Böyük, U. & Erol, M. (2008). Türkiye’de fen bilgisi laboratuarları: zorluklar ve öneriler, International Journal on Hands-on Science, 20, 1-6.
  • Buesing, M. & Cook, M. (2013). Augmented reality comes to physics. The Physics Teacher, 51, 226.
  • Chabay, R. & Sherwood, B. (2006). Restructuring the introductory electricity and magnetism course. American Journal of Physics, 74(4), 329-336.
  • Chiappetta, E. L. & Koballa, T. R. (2002). Science Instruction in the middle and secondary schools (5th ed.). Upper Saddle River, NJ: Pearson.
  • Çepni, S. (2001). Araştırma ve Proje Çalışmalarına Giriş. Trabzon: Erol Ofset.
  • Dagher, Z. (1995). Review of studies on the effectiveness of instructional analogies in science education. Science Education, 79 (3), 295-312.
  • Demirci, N. & Çirkinoğlu, A. (2004). Öğrencilerin elektrik ve manyetizma konularında sahip oldukları ön bilgi ve kavram yanılgılarının belirlenmesi. Türk Fen Eğitimi Dergisi, 1 (2), 116-136.
  • Duphin, J. J. & Johsua, S. (1989). Analogies and modeling analogies in teaching: some examples in basic electricity. Science Education, 73 (2), 207-224.
  • Finkelstein, N. D., Perkins, K. K., Adams, W., Kohl, P. & Podolefsky, N. (2005). Can computer simulations replace real equipment in undergraduate laboratories?. In AIP Conference Proceedings, 790, p. 101.
  • Grabinger S. (1999). Instructional strategies in distance science courses: Can the web improve undergraduate science education?. Retrieved March 05,2012, from http://web:uccs.edu/bgaddis/leadership/litreviewD2.htm.
  • Greca, I. M. & Moreira, M. A. (2000). Mental models, conceptual models, and modeling. International Journal of Science Education, 22(1), 1-11.
  • Hofstein, A., Navon, O., Kipnis, M. & Mamlok‐Naaman, R. (2005). Developing students' ability to ask more and better questions resulting from inquiry‐type chemistry laboratories. Journal of Research in Science Teaching, 42(7), 791-806.
  • Jonassen, D.H., Pech, K.L. & Wilson, B.G. (1999). Learning with technology: a constructivist perspective. New Jersey: Merrill, 4, 67-68.
  • Kirkley, J., Kirkley, S., Myers, T., Borland, C., Swan, M., Sherwood, D. & Singer, M. (2005). Embedded training for objective force warrior: using problem-based embedded training (PBET) to support mixed and virtual reality simulations. US Army Research Institute for the Behavioral and Social Sciences Technical Report.
  • Kocakülah, M. S. (1999). A study of the development of Turkish first year university students’ understanding of electromagnetism and the implications for instruction. Unpublished PhD thesis, University of Leeds, Leeds.
  • Lawson, D. & Lawson, A. (1993). Neural principles of memory and a neural theory of analogical insight. Journal of Research in Science Teaching, 30 (10), 1327-1348.
  • Liu W., Cheok A.D., Ling C. & Theng Y., (2007). Mixed reality classroom-learning from entertainment, DIMEA , 65-72.
  • Macedo S.H, Fernandes F.A., Lima J.V. & Biazus M.C.V. (2012). Learning object to teach the interaction between two magnetics using augmented reality. Journal of Educational and Instructional Studies, 2(4), 1-12.
  • Matsutomo, S., Miyauchi, T., Noguchi, S. & Yamashita, H. (2012). Real-time visualization system of magnetic field utilizing augmented reality technology for education. Magnetics, IEEE Transactions on, 48(2), 531-534.
  • McDermott, L. C. (1993). How we teach and how students learn: a mismatch?. Am J. Phys. 61, 295-298.
  • Müller, D. & Ferreira, J. M. (2003). MARVEL: a mixed reality learning environment for vocational training in mechatronics. In Proceedings of the Technology Enhanced Learning International Conference,(TEL'03), Milan, Italy.
  • Serway A. & Beichner R. (2002), Fen ve Mühendislik için Fizik (Çolakoğlu K., Çev.) Ankara: Palme Yayıncılık.
  • Uşun S., (2003). Eğitim ve öğretimde bilgisayarın yararları ve bilgisayardan yararlanmada önemli rol oynayan etkenlere ilişkin öğrenci görüşleri. Kastamonu Eğitim Dergisi, 2(11), 367-378.
  • Winkler, T., Herczeg, M., & Kritzenberger, H. (2002). Mixed reality environments as collaborative and constructive learning spaces for elementary school children. In World Conference on Educational Multimedia, Hypermedia and Telecommunications, 2002(1), 1034-1039.
  • Winn, W., Windschitl, M., Fruland, R. & Lee, Y. (2002). When does immersion in a virtual environment help students construct understanding. In Proceedings of the International Conference of the Learning Sciences, 497-503.
  • Zagoranski, S. & Divjak, S. (2003). Use of augmented reality in education. IEEE, 2, 339-342.