Yeni imalat teknolojileri açısından doğal elyaf termoplastik kompozitler: Bir derleme

Bu çalışma, estetik ve düşük bakım özelliklerine sahip birçok uygulamada araştırmacıların ve pazarın dikkatini çeken Doğal Elyaf Termoplastik Kompozitleri (NFTC) araştırmaktadır. Katkı kullanımı, NFTC üretimi açısından giderek artış gösteren, güçlü performans gereksinimlerini karşıladığı için de yeni pazarlara giriş imkanı sağlayan, uzun ömürlü ve kullanıcı beklentilerini tatmin eden bir uygulamadır. Bu çalışmada, polimer kompozitlerin biyo-bazlı katkıları dahil olmak üzere doğal kaynaklardan elde edilen polimer karışımlar tanıtılmıştır. İlaveten, kompozit üretkenliğini arttırmak için favori katkı maddeleri ve literatürdeki en etkili peletleme işlemleri analiz edilmiştir. Çalışmanın sonunda, yaygın olarak kullanılan NFTC üretim teknolojileri tartışılmıştır. Çeşitli imalat zorluklarının üstesinden gelen ve yüksek işlem performansları sağlayan bir imalat için özel olarak tasarlanmış karıştırıcı bir extruder tanıtılmıştır. Deneysel bir uygulama sonunda ulaşılan üretim kapasitesi paylaşılmıştır.

Natural fiber thermoplastic composites in terms of new production technologies: A review

This paper investigates Natural Fiber Thermoplastic Composites (NFTC) which take attention of the researchers and the market having aesthetic and low maintenance properties in many applications. Additive usage is an increasing application for NFTC production to get into the novel markets satisfying strong performance requirements and life stability interests of users. In this article, polymer blends from natural resources including bio-based additives for polymer composites were introduced. Afterwards, favorite additive types and most effective pelletizing processes in literature were analyzed to improve composite productivity. At the end of the paper, the common NFTC production technologies are discussed. A specially designed compounding extruder which is designed to overcome production difficulties and supply high processing performances is introduced. At the end of conducted experiment, the obtained production output rate is presented.

___

  • Muthuraj R, Misra M, Mohanty AK. Studies on mechanical, thermal, and morphological characteristics of biocomposites from biodegradable polymer blends and natural fibers. Editors: Misra M, Pander J, Mohanty A. Biocomposites: Design and Mechanical Performance, 93-140, Canada, Woodhead Publishing, 2015.
  • Sanjay MR, Arpitha GR, Yogesha B. “Study on mechanical properties of natural-glass fibre reinforced polymer hybrid”. Materials Today: Proceedings, 2(4-5), 2959-2967, 2015.
  • Imre B, Pukánszky B. “Recent advances in bio-based polymers and composites: Preface to the BiPoCo 2012 Special Section”. European Polymer Journal, 49(6), 1146-1150, 2013.
  • Imre B, Pukánszky B. “Compatibilization in bio-based and biodegradable polymer blends”. European Polymer Journal, 49(6), 1215-1233, 2013.
  • Naseem A, Tabasum S, Zia KM, Zuber M, Ali M, Noreen A. “Lignin-derivatives based polymers, blends and composites: A review”. International Journal of Biological Macromolecules, 93, 296-313, 2016.
  • Jiang L, Zhang J. Biodegradable and Biobased Polymers. Editor: Kutz M. Applied Plastics Engineering Handbook, 127-143, Norwich, NY, William Andrew Publishing, 2017.
  • Jian L, Huang J, Qian J, Chen F, Zhang J, Wolcott MP, Zhu Y. “Study of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/Bamboo Pulp Fiber Composites: Effects of Nucleation Agent and Compatibilizer”. Journal of Polymers and the Environment, 16(2), 83-93, 2008.
  • Markarian J. “Additive development aid growth in wood plastic composites”. Plastics Additives & Compounding, 4(11), 18-21, 2002.
  • Pritchard G. “Two technologies merge: wood plastic composites”. ReinforcedPlastics, 48(6), 21-29, 2004.
  • Sykacek E, Hrabalova M, Frech H, Mundigler N. “Extrusion of five biopolymers reinforced with increasing wood flour concentration on a production machine, injection moulding and mechanical performance”. Composites: Part A, 40(8), 1272-1282, 2009.
  • Nygard P, Tanem BS, Karlsen T, Brachet P, Leinsvang B. “Extrusion-Based wood fiber-pp composites: wood powder and pelletized wood fibers-a comparative study”. Composites Science and Technology, 68(15-16), 3418-3424, 2008.
  • Danyadi L, Janecska T, Szabo Z, Nagy G, Moczo J, Pukanszky B. “Wood flour filled PP composites: Compatibilization and adhesion”. Composites Science and Technology, 67(13), 2838-2846, 2007.
  • Bledzki A, Letman M, Viksne R, Rence L. “A comparison of compounding processes and wood type for wood fibre-PP composites”. Composites Part A, 36(6), 789-797, 2005.
  • Sykacek E, Hrabalova M, Frech H, Mundigler N. “Extrusion of five biopolymers reinforced with increasing wood flour concentration on a production machine, injection moulding and mechanical performance”. Composites: Part A, 40(8), 1272-1282, 2009.
  • Yu L, Dean M, Li L, “Polymer blends and composites from renewable resources”. Progress in Polymer Science, 31(6), 576-602, 2006.
  • Keener TJ, Stuart RK, Brown TK. “Maleated coupling agents for natural fiber composites”. Composites Part A: Applied Science and Manufacturing, 35(3), 357-362, 2004.
  • Nourbakhsh A, Karegarfard A, Ashori A, Nourbakhsh A. “Effects of particle size and coupling agent concentration on mechanical properties of particulate-filled polymer composites”. Journal of Thermoplastic Composite Materials, 23(2), 169-174, 2010.
  • Arrieta MP, López J, Ferrándiz S, Peltzer MA. “Characterization of PLA-limonene blends for food packaging applications”. Polymer Testing, 32(4), 760-767, 2013.
  • Jord_a-Vilaplana A, Carbonell-Verdú A, Samper MD, Pop A, Garcia-Sanoguera D. “Development and characterization of a new natural fiber reinforced thermoplastic (NFRP) with Cortaderia selloana (Pampa grass) short fibers”. Composites Science and Technology, 145, 1-9, 2017.
  • Kumre A, Rana RS, Purohit R. “A Review on mechanical property of sisal glass fiber reinforced polymer composites”. Materials Today: Proceedings, 4(2), 3466-3476, 2017.
  • Lörcks J. “Properties and applications of compostable starch-based plastic material”. Polymer Degradarion and Stability, 59(1-3), 245-249, 1998.
  • Sanjay MR, Arpitha GR, Yogesha B. “Study on mechanical properties of natural-glass fibre reinforced polymer hybrid composites: a review”. Materials Today: Proceedings, 2(4-5), 2959-2967, 2015.
  • Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J. “Thermal, mechanical, and physical properties of seaweed/sugar palmfibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites”. International Journal of Biological Macromolecules, 97, 606-615, 2017.
  • Akdoğan A, Vanlı AS. "Material characterization of different dimensioned wood particle reinforced polymer composites". Journal of Thermoplastic Composite Materials, 26(9), 1237-1248, 2013.
  • Badia JD, Gil-Castell O, Ribes-Greus A. “Long-term properties and end-of-life of polymers from renewable resources”. Polymer Degradation and Stability, 137, 35-57, 2017.
  • Ray SS, Pouliot S, Bousmina M, Utracki LA. “Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends”. Polymer, 45(25), 8403-8413, 2004.
  • Gu SY, Zhang K, Ren J, Zhan H. “Melt rheology of polylactide/poly(butylenes adipate-co-terephthalate) blends, Carbohydrate”. Polymers 74, 79-85, 2008.
  • Marten E, Muller RJ, Deckwer WD. “Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyesters”. Polymer Degradation and Stability, 88(3), 371-381, 2005.
  • Markarian J. “Wood-plastic composites: current trends in materials and processing”. Plastics Additives & Compounding, 7(5), 20-26, 2005.
  • Markarian J. “Process modifiers improve output and cost competitiveness”. Plastics Additives & Compounding, 8(6), 20-23, 2006.
  • Bengtsson M, Baillif ML, Oksman K. “Extrusion and mechanical properties of highly filled cellulose fibre-polypropylene composites”. Composites: Part A, 38(8), 1922-1931, 2007.
  • Raquez JM, Degée P, Nabarb Y, Narayan R, Dubois P. “Biodegradable materials by reactive extrusion: from catalyzed polymerization to functionalization and blend compatibilization”. Comptes Rendus Chimie, 9(11-12), 1370-1379, 2006.
  • Murariu M, Dubois P. “PLA composites: From production to properties”. Advanced Drug Delivery Reviews, 107, 17-46, 2016.
  • Farah S, Anderson DG, Langer R. “Physical and mechanical properties of PLA, and their functions in widespread applications-a comprehensive review”. Advanced Drug Delivery Reviews, 107, 367-392, 2016.
  • Mani R, Bhattacharya M. “Properties of injection moulded starch/synthetic polymer blends-III. Effect of Amylopectin to Amylose ratio in starch”. European Polymer Journal, 34(10),1467-1475, 1998.
  • Mani R, Bhattacharya M. “Properties of injection moulded blends of starch and modified biodegradable polyesters”. European Polymer Journal, 37(3), 515-526, 2001.
  • Cetin NS, Alma MH, Basturk MA. “Chemical agents and methods providing compatibility between ligno cellulosic fibers and synthetic polymer to obtain new composites”. Journal of Science and Engineering, 3(2), 58-68, 2000.
  • Reedy M. “New chemical foaming agents expand wood/plastic composite market”. Plastics Additives and Compounding, 4(5), 24-26, 2002.
  • Law KN, Kokta BV, Mao CB. “Fibre morphology and soda-sulphite pulping of switchgrass”. Bioresource Technology, 77(1), 1-7, 2001.
  • Akhtar M, Scott G, Swaney R, Shipley, D. “Biomechanical pulping: a mill-scale evaluation”. Resource Conservation and Recycling, 28(3-4), 241-252, 2000.
  • Hietala M, Samuelsson E, Niinimäki J, Oksman K. “The effect of pre-softened wood chips on wood fibre aspect ratio and mechanical properties of wood-polymer composites”. Composites: Part A, 42(12), 2110-2116, 2011.
  • Sarul IT, Akdogan A, Koyun A. “Alternative production methods for lignocellulosic composite materials”. Journal of Thermoplastic Composite Materials, 23(3), 375-384, 2010.
  • Demirbas A. “Aqueous glycerol delignification of wood chips and ground wood”. Biosource Technology, 63(2), 179-185, 1998.
  • Kücük M, Demirbas A. “Kinetic study on hydrolysis of biomass (Ailanthus altissima chips) by using Alkaline-glycerol solution”. Energy Conservation&Management, 40(13), 1397-1403, 1999.
  • Yu L, Dean K, Li L. “Polymer blends and composites from renewable resources”. Progress in Polymer Science, 31(6), 576-602, 2006.
  • Gila BM, Songa SW, Leea JH, Jeona J, Leea KH, Wie JJ. “Introduction of primary chemical bonding in lignin-based PP composites for mechanical reinforcement via reactive extrusion”. Composites Part B: Engineering, 165, 510-515, 2019.
  • Luoa G, Liua G, Chena Y, Liangb W, Liub G, Niua Y, Lia G. “High performance glass fiber reinforced polypropylene realized by reactive extrusion technology”. Composites Science and Technology, 165, 198-205, 2018.
  • Quiles-Carrilloa L, Montanesa N, Sammonb C, Balarta R, Torres-Giner S. “Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil”. Industrial Crops & Products, 111, 878-888, 2018.
  • Lou CW, Lin CW, Lei CH, Su KH, Hsu CH, Liu ZH, Lin JH. “PET/PP blend with bamboo charcoal to produce functional composites”. Journal of Materials Processing Technology, (192-193), 428-433, 2007.
  • Jayaraman K, Halliwell R. “Harakeke (phormium tenax) fibre-waste plastics blend composites processed by screwless extrusion”. Composites: Part B, 40(7), 645-649, 2009.
  • Akdogan A, Vanlı AS. Wood-Polymer Composites. Editor: Concu G. Wood Civil Engineering, 149-170, London, England, InTech Open Access Publishing, 2017.