TOPEX V28.1 gravite verilerinin denizler hariç ana kara genelinde kullanılabilirliği; Batı Anadolu örneği

Yerbilimlerinde yerinde ölçümün mümkün olmadığı yerlerde uydu verileri çok önemli araçlardır. Özellikle gravite verileri gömülü yapıların, yanal yönlü ortam değişikliklerinin tespitinde önemli Jeofiziksel yöntemlerdendir. Günümüzde birçok küresel uydu modelleri benzer problemlerin çözülmesinde kullanılmaktadır. TOPEX V28.1 veri seti diğer modellere göre çok daha sık örnekleme aralığına sahiptir. Fakat genel uygulamada elde edilen veri seti serbest hava anomali değerleridir. Bu nedenle uygulamacılar kara verilerinin değerlendirmesinde bu veri setini tercih etmemektedirler. Bu çalışmada örnekleme aralığının daha sık olması nedeniyle TOPEX V28.1 veri setinden Bouguer Gravite Anomali değerlerinin hesaplanması hedeflenmiştir. Elde edilen sonuçlar EGM08 ve WGM 2012 sonuçları ile karşılaştırılmış uyumları denetlenmiştir. Güç spektrumu yöntemi ile hesaplanan derinlikler irdelenmiş, yanal yönlü türev sonuçları ile karşılaştırıldıktan sonra 3 Boyutlu (3-B) Euler derinlik uygulaması ile Batı Anadolu genel tektonik yapısı içinde sonuçlar tartışılmıştır.

Availability of TOPEX V28.1 gravity data across the continent excluding seas; A case study, Western Anatolia example.

In geosciences, satellite data are very important, where in-situ methods cannot be applicable. Especially the gravity data are very important for investigating the buried structures and discovering the changes of subterranean media alongside laterally. Nowadays, many global satellite models are used for solving these problems. The TOPEX V28.1 data set has a much more frequent sampling interval than other models. However, the TOPEX data set obtained in the general application is free air anomaly values. For this reason, researchers do not prefer TOPEX dataset for evaluation. In this study the target is using of TOPEX data set, which has a much more frequent sampling interval, to obtain Bouguer gravity values. These calculated new Bouguer gravity results have been compared with the results of the EGM08 and WGM2012 models to check coherence. The depth values which calculated by using the power spectrum method were investigated the findings have been compared with the result of the horizontal derivatives and finally findings of the general tectonic of the western Anatolian which obtained by using 3-D Euler depth solutions were discussed.

___

[1] Pavlis NK, Holmes SA, Kenyon SC, Factor JK. “An earth gravitational model to degree 2160: EGM2008”. EGU General Assembly, Vienna, Austria, 13-18 April, 2008.

[2] Fullea J, Fernandez M, Zeyen, H. “FA2BOUG-A FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies: Application to the AtlanticMediterranean transition zone”. Computers & Geosciences, 34(12), 1665-1681, 2008.

[3] Andersen OB, Knudsen P, Berry P. “The DNSC08GRA global marine gravity field from double retracked satellite altimetry”. Journal of Geodesy, 84(3), 191-199, 2010.

[4] Andersen OB. “The DTU10 Gravity field and Mean sea surface”. Second International Symposium of the Gravity Field of the Earth (IGFS2), Fairbanks, Alaska, 20-22 September, 2010.

[5] Balmino G, Vales N, Bonvalot S, Briais A. ”Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies”. Journal of Geodesy, 86(7), 499-520, 2012.

[6] Bureau Gravimétrique International Commission for the Geological Map of the World. “World gravity map”. https://bgi.obs-mip.fr/data-products/grids-andmodels/wgm2012-global-model/ (16.04.2021).

[7] Sandwell DT, Garcia E, Soofi K, Wessel P, Smith WHF. “Towards 1 mGal global marine gravity from CryoSat-2, Envisat, and Jason-1”. The Leading Edge, 32(8), 892-899, 2013.

[8] Wingham D, Francis CR, Baker S, Bouzinac C, Brockley D, Cullen R, de Chateau-Thierry P, Laxon SW, Mallow U, Mavrocordatos C, Phalippou L, Ratier G, Rey L, Rostan F, Viau P, Wallis DW. “CryoSat-2: A mission to determine the fluctuations in Earth’s land and marine ice fields”. Advances in Space Research, 37(4), 841-871, 2006.

[9] Sandwell DT, Müller RD, Smith WH, Garcia E, Francis R. “New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure”. Science, 346(6205), 65-67, 2014.

[10] Bozkurt E. “Neotectonics of Turkey-a synthesis”. Geodinamica Acta, 14, 3-30, 2001.

[11] Şengör AMC, Kidd WSF. “Post-collisional tectonics of Turkish-Iranian plateau and a comprasion with Tibet”. Tectonophysics, 55, 361-376, 1979.

[12] Oral MB, Reilinger RE, Toksöz MN, Kong RW, Barka AA, Kınık I, Lenk O. “Global Positioning System Offers Evidence of Plate Motions in Eastern Mediterranean”. EOS, Transactions, American Geophysical Union 76, 1995.

[13] Le Pichon, X, Chamot-Rooke C, Lallemant S, Noomen R, Veıs G. “Geodetic determination of the kinematics of Central Greece with respect to Europe: implications for Eastern Mediterranean tectonics”. Journal of Geophysical Research, 100, 12675-12690, 1995.

[14] Sözbilir H, Sümer Ö, Uzel B, Özkaymak Ç, Ersoy Y, Erkül F, Helvacı C. “Batı Anadolu’da İzmir-Balıkesir Transfer Zonu içinde kalan aktif doğrultu-atımlı faylarla sınırlı havzaların jeolojik özellikleri”. ATAG 11, Kocaeli, Türkiye, 08-09 Kasım 2007.

[15] Özkaymak Ç, Sözbilir H, Uzel B. “Neogene-Quaternary evolution of the Manisa Basin: Evidence for variation in the stress pattern of the İzmir-Balıkesir Transfer Zone, western Anatolia”. Journal of Geodynamics, 65, 117-135, 2013.

[16] Dewey JF, Şengör AMC. “Aegean and surrounding regions: complex multi-plate and continuum tectonics in a convergent zone”. Bulletin of the Seismological Society of America, 90, 84-92, 1979.

[17] McKenzie DP. “Active tectonics of the Mediterranean”. Region”. Geophysical Journal of Royal Astronomical Society 30(2), 109-185, 1972.

[18] Koçyiğit A, Yusufoğlu H, Bozkurt, E. “Evidence from the Gediz graben for episodic two-stage extension in western Turkey”. Journal of the Geological Society, 156, 605-616, 1999.

[19] Bozkurt E, Sözbilir, H. “Tectonic evolution of the Gediz Graben: field evidence for an episodic, two-stage extension in Western Turkey”. Geological Magazine, 141, 63-79, 2004.

[20] Bozkurt E, Sözbilir H. “Evolution of the large-scale active Manisa Fault, Southwest Turkey: implications on fault development and regional tectonics”. Geodinamica Acta 19, 427-453, 2006.

[21] Bozkurt E. “Timing of extension on the Büyük Menderes Graben, western Turkey, and its tectonic implications”. Geological Society Special Publication, Geological Society, London, 173(1), 385-403, 2000.

[22] Westaway R. “Block rotation in western Turkey: 1. Observational evidence". Journal of Geophysical Research Solid Earth, 95(B12), 19857-19884, 1990.

[23] Westaway R. “Neogene evolution of the Denizli region of western Turkey”. Journal of Structural Geology, 15(1), 37-53, 1993.

[24] Koçyiğit A. “The Denizli graben-horst system and the eastern limit of western Anatolian continental extension: basin fill, structure,deformational mode, throw amount and episodic evolutionary history,SW Turkey”. Geodinamica Acta, 18(3-4), 167-208, 2005.

[25] Pamukcu O, Yurdakul A. “Isostatic compensation in western Anatolia with estimate of the effective elastic thickness”. Turkish Journal of Earth Sciences, 17(3), 545-557, 2008.

[26] Tezel T, Shibutani T, Kaypak B. “Crustal structure variation in western Turkey inferred from the receiver function analysis”. Tectonophysics, 492(1-4), 240-252, 2010.

[27] Çifçi G, Pamukçu O, Çoruh C, Çopur S, Sözbilir H. “Shallow and deep structure of a supradetachment basin based on geological, conventional deep seismic reflection sections and gravity data in the Buyuk Menderes Graben, western Anatolia”. Surveys in Geophysics, 32(3), 271-290, 2011.

[28] Ates A, Bilim F, Buyuksarac A, Aydemir A, Bektas O, Aslan Y. “Crustal structure of Turkey from aeromagnetic, gravity and deep seismic reflection data”. Surveys in geophysics, 33(5), 869-885, 2012.

[29] Dogru F, Pamukcu O, Gonenc T, Yildiz H. “Lithospheric structure of western Anatolia and the Aegean Sea using GOCE-based gravity field models”. Bollettino di Geofisica Teorica ed Applicata, 59(2), 135-160, 2018.

[30] Akay T, Bilim, F, Koşaroğlu S. “Menderes Masifi tektonik yapılarının (Batı Anadolu, Türkiye) Bouguer gravite analizi kullanılarak incelenmesi”. Cumhuriyet Yerbilimleri Dergisi, 30(2), 71-86, 2013.

[31] Gessner K, Gallardo LA, Markwitz, V, Ring U, Thomson SN. “What caused the denudation of the Menderes Massif: review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey?”. Gondwana Research, 24, 243-274, 2013.

[32] Yılmaz Y. “Ege bölgesinin aktif tektoniği”. Batı Anadolu’nun Depremselliği Sempozyumu, İzmir, Türkiye, 24-27 Mayıs, 2000.

[33] Sözbilir H, Sarι B, Uzel B, Sümer Ö, Akkiraz S. “Tectonic implications of transtensional supradetachment basin development in an extension‐parallel transfer zone: the Kocaçay Basin, western Anatolia, Turkey”. Basin Research, 23(4), 423-448, 2011.

[34] Smith WHF, Sandwell DT. “Global seafloor topography from satellite altimetry and ship depth soundings”. Science, 277, 1957-1962, 1997.

[35] Emre Ö, Duman T Y, Özalp S, Şaroğlu F, Olgun Ş, Elmacı H, Can T. “Active fault database of Turkey”. Bulletin of Earthquake Engineering, 16(8), 3229-3275, 2018.

[36] Pirttijärvi M. FOURPOT Version 1.1 User’s guide “Fourier Transform Based Processing of 2D Potential Field Data”. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10. 1.1.459.9490&rep=rep1&type=pdf (16.04.2021).

[37] Bhattacharyya BK. “Some general properties of potential fields in space and frequency domain; a review”. Geoexploration, 5, 127-143, 1967.

[38] Ruotoistenmäki, T. Depth estimation from potential field data using the Fourier amplitude spectrum. Geoexploration, 21(3), 191-201, 1983.

[39] Cordell L, Grauch VJS. “Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In The utility of regional gravity and magnetic anomaly maps”. Society of Exploration Geophysicists, 1985. https://doi.org/10.1190/1.0931830346.ch16.

[40] Hood PJ, Teskey DJ “Aeromagnetic gradiometer program of the Geological Survey of Canada”. Geophysics, 54(8), 1012-1022, 1989.

[41] Verduzco B, Fairhead JD, Green CM, MacKenzie C. “New insights into magnetic derivatives for structural mapping”. The leading edge, 23(2), 116-119, 2004.

[42] Blakely R. Potential Teory in Gravity and Magnetic Applications. New York, USA, Cambridge University Press, 1995.

[43] Akkuş İ, Akıllı H, Ceyhan S, Dilemre A, Tekin Z. “Jeotermal Kaynakları Envanteri”. Maden Tetkik Arama Enstitüsü, Ankara, Türkiye, Envanter Serisi 201, 2005.

[44] Thompson DT. “EULDPH: A new technique for making computer-assisted depth estimates from magnetic data”. Geophysics, 47(1), 31-37, 1982.

[45] Reid AB, Allsop JM, Granser H, Millett AT, Somerton IW. “Magnetic interpretation in three dimensions using Euler deconvolution”. Geophysics, 55(1), 80-91, 1990.

[46] Khalil MA, Santos FM, Farzamian M. “3D gravity inversion and Euler deconvolution to delineate the hydro-tectonic regime in El-Arish area, northern Sinai Peninsula”. Journal of applied Geophysics, 103, 104-113, 2014.

[47] Aboud E, Shareef A, Alqahtani FA, Mogren S. “Using a 3D gravity inversion technique to image the subsurface density structure in the Lunayyir volcanic field. Saudi Arabia”. Journal of Asian Earth Sciences, 161, 14-24, 2018.

[48] Toker CE, Ulugergerli EU, Kılıç AR. “Naşa sokulumu (Batı Anadolu) ve teknotik anlamı: gravite ve deprem verilerinin birlikte analizi The Naşa intrusion (Western Anatolia) and its tectonic implication: A joint analyses of gravity and earthquake catalog data”. Bulletin of the Mineral Research and Exploration 156, 251-262, 2018.

[49] Akın U. “Gravite verilerinden Türkiye’nin sismik hız dağılımı ve kabuk yapısının ortaya çıkarılması”. MTA Dergisi, 153, 185-202, 2016.

[50] Pamukçu O, Gönenç T, Çırmık A, Pamukçu Ç, Ertürk N. “The Geothermal Potential of Büyük Menderes Graben Obtained by Combined 2.5-D Normalized Full Gradient Results”. Pure and Applied Geophysics, 176(11), 5003-5026, 2019.

[51] Dolmaz MN, Hisarli ZM, Ustaömer T, Orbay N. “Curie point depths based on spectrum analysis of aeromagnetic data, West Anatolian extensional province Turkey”. Pure and Applied Geophysics,162(3), 571-590, 2005.

[52] Bilim F, Akay T, Aydemir A, Kosaroglu S. “Curie point depth, heat-flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes massif and the Aegean region, western Turkey”. Geothermics, 60, 44-57, 2016.

[53] Ozer C, Gok E, Polat O. “Three-dimensional seismic velocity structure of the Aegean Region of Turkey from local earthquake tomography”. Annals of Geophysics, 61(1), (1-21), 2018.

[54] Vanacore EA, Taymaz T, Saygin E. “Moho structure of the Anatolian Plate from receiver function analysis”. Geophysical Journal International, 193, 329-337, 2013.

[55] Sarı C, Şalk M. “Sediment thicknesses of the western Anatolia graben structures determined by 2D and 3D analysis using gravity data”. Journal of Asian Earth Sciences, 26, 39-48, 2006.

[56] Altınoğlu FF, Sari M, Aydin A. “Shallow crust structure of the Büyük Menderes graben through an analysis of gravity data”. Turkish Journal of Earth Sciences, 27(6), 421-431, 2018.

[57] Altınoğlu FF. Batı Anadolu Tektoniğinin Jeofizik Yöntemlerle İncelenmesi. Doktora Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, Türkiye 2012.

___

Bibtex @araştırma makalesi { pajes1030522, journal = {Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi}, issn = {1300-7009}, eissn = {2147-5881}, address = {}, publisher = {Pamukkale Üniversitesi}, year = {2021}, volume = {27}, pages = {766 - 774}, doi = {}, title = {TOPEX V28.1 gravite verilerinin denizler hariç ana kara genelinde kullanılabilirliği; Batı Anadolu örneği}, key = {cite}, author = {Gönenç, Tolga} }
APA Gönenç, T. (2021). TOPEX V28.1 gravite verilerinin denizler hariç ana kara genelinde kullanılabilirliği; Batı Anadolu örneği . Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi , 27 (6) , 766-774 .
MLA Gönenç, T. "TOPEX V28.1 gravite verilerinin denizler hariç ana kara genelinde kullanılabilirliği; Batı Anadolu örneği" . Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 (2021 ): 766-774 <
Chicago Gönenç, T. "TOPEX V28.1 gravite verilerinin denizler hariç ana kara genelinde kullanılabilirliği; Batı Anadolu örneği". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 (2021 ): 766-774
RIS TY - JOUR T1 - TOPEX V28.1 gravite verilerinin denizler hariç ana kara genelinde kullanılabilirliği; Batı Anadolu örneği AU - Tolga Gönenç Y1 - 2021 PY - 2021 N1 - DO - T2 - Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi JF - Journal JO - JOR SP - 766 EP - 774 VL - 27 IS - 6 SN - 1300-7009-2147-5881 M3 - UR - Y2 - 2020 ER -
EndNote %0 Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi TOPEX V28.1 gravite verilerinin denizler hariç ana kara genelinde kullanılabilirliği; Batı Anadolu örneği %A Tolga Gönenç %T TOPEX V28.1 gravite verilerinin denizler hariç ana kara genelinde kullanılabilirliği; Batı Anadolu örneği %D 2021 %J Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi %P 1300-7009-2147-5881 %V 27 %N 6 %R %U
ISNAD Gönenç, Tolga . "TOPEX V28.1 gravite verilerinin denizler hariç ana kara genelinde kullanılabilirliği; Batı Anadolu örneği". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 27 / 6 (Kasım 2021): 766-774 .
AMA Gönenç T. TOPEX V28.1 gravite verilerinin denizler hariç ana kara genelinde kullanılabilirliği; Batı Anadolu örneği. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021; 27(6): 766-774.
Vancouver Gönenç T. TOPEX V28.1 gravite verilerinin denizler hariç ana kara genelinde kullanılabilirliği; Batı Anadolu örneği. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2021; 27(6): 766-774.
IEEE T. Gönenç , "TOPEX V28.1 gravite verilerinin denizler hariç ana kara genelinde kullanılabilirliği; Batı Anadolu örneği", Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 27, sayı. 6, ss. 766-774, Kas. 2021
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi
  • ISSN: 1300-7009
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: Pamukkale Üniversitesi

146.4b73.7b

Sayıdaki Diğer Makaleler

Farklı atık yağ modifiyeli bitümlerin farklı frekans ve sıcaklıklardaki reolojik özelliklerinin incelenmesi

Erkut YALÇIN, Mehmet YILMAZ

26 Eylül 2019 Marmara Denizi depremi’nin (5.8 Mw) İstanbul ve çevre illerde oluşturduğu zemin etkilerinin değerlendirilmesi

Hamdullah LİVAOĞLU, Fadime SERTÇELİK

Çöp sızıntı suyu arıtımı için denitrifikasyon ve kısmi nitrifikasyon proseslerinin performansı

Ahmet DUYAR, Vildan CIFTCIOGLU, Gokhan CIVELEKOGLU, Kevser CIRIK

Güvenlik kriteri olarak çarpışmaya kadar geçen süre ve takip zaman aralığı karşılaştırılması

Ehsan RAMEZANI-KHANSARI, Fereidoon MOGHADAS NEJAD, Sina MOOGEH

TOPEX V28.1 gravite verilerinin denizler hariç ana kara genelinde kullanılabilirliği; Batı Anadolu örneği

Tolga GÖNENÇ

Bahatlar volkanitlerinin (Emet-Kütahya) petrografisi ve jeokimyası

Cafer ÖZKUL, Recep Uğur ACAR, Mehmet DEMİRBİLEK

İçme suyu dağıtım sistemlerinde sızıntı yönetimi ve şebeke rehabilitasyonu için fayda maliyet analizi

Fatih Mehmet DURMUŞÇELEBİ, Özgür ÖZDEMİR, Mahmut FIRAT

Kayaçların direkt çekme dayanımlarının indirekt çekme dayanımlarından elde edilmesi için alternatif bir yaklaşım

Kenan TÜFEKCİ, Servet DEMİRDAĞ, Nazmi ŞENGÜN, Tamer EFE, Raşit ALTINDAĞ

Geri kazanılmış asfalt malzemenin uzun süreli filtrasyon performansı

Ayşegül BAYIN SARIAHMETOĞLU, Recep İYİSAN, Aslı YALÇIN DAYIOĞLU, Mustafa HATİPOĞLU

Farklı kür sıcaklıklarında kireçle stabilize edilmiş yüksek plastisiteli killi bir zeminin kayma mukavemeti parametrelerinin Yanıt Yüzey Yöntemi (YYY) ile tahmini

Hakan Alper KAMİLOĞLU, Hüseyin TURAN