Tek fazlı şebeke bağlantılı transformatörsüz PV evirici sistem kontrolü

Bu çalışma, çok verimli ve güvenli evirici konseptli transformatörsüz eviricili şebeke bağlantılı fotovoltaik maksimum güç noktası takip sisteminin kontrolünün benzetim performansını sunmaktadır. Güç ve gerilimin değişimini temel alan dürt ve gözlemle tekniği, fotovoltaik birim sisteminden maksimum güç elde etmek için kullanılmaktadır. DA-DA yükselten çevirici bu teknik ile çevirici anahtarına ait PWM sinyalinin doluluk oranı değiştirilerek uygulanmaktadır. Tek fazlı çok verimli ve güvenli evirici konseptli transformatörsüz evirici, şebekeye güç akışını sağlamaktadır. Evirici kontrolü, şebeke gerilimi ve akımı ve ayrıca DA-DA yükselten çevirici çıkış gerilim değerlerine dayanmaktadır. Sistem performansı, PV modül ve DA-DA yükselten çevirici çıkış gerilim ve akımları, şebeke akımı ve gerilimi, kaçak akım, aktif ve reaktif güçler ve güç verim karakteristiği yönünden değerlendirilmektedir. Önerilen sistemde benzetim sonuçları HERIC evirici için maksimum verimini %97.96, Avrupalı verimini %96.84 ve Kaliforniyalı verimini %97.60 olarak 20 kHz anahtarlama frekansında göstermektedir.

Control of single phase grid connected transformerless PV inverter system

This paper presents the simulation performance of control of a grid-connected photovoltaic maximum power point tracking system with highly efficient and reliable inverter concept transformerless inverter. Perturb and Observe technique based on variation of power and voltage is used to extract maximum power from photovoltaic power system. A dc-dc boost converter is applied with the technique by changing duty ratio of the PWM signal of the converter switch. A single-phase highly efficient and reliable inverter concept transformerless inverter provides a power flow into grid. The control of the inverter is based on the grid voltage and current and also dc-dc boost converter output voltage values. The system performance is evaluated in terms of PV module and dc-dc boost converter output voltages and currents, grid current and voltage, leakage current, active and reactive powers and power efficiency characteristics. The simulation results show 97.96% maximum efficiency, 96.84% European efficiency and 97.60% Californian efficiency with 20 kHz switching frequency for the HERIC inverter on the proposed system. 

___

  • Zaid SA, Kassem AM. “Review, analysis and improving the utilization factor of a PV-grid connected system via HERIC transformerless approach”. Renewable and Sustainable Energy Reviews, 73, 1061-1069, 2017.
  • REN21. “Renewables 2017 Global Status Report”. Paris France, 2017
  • Freddy TKS, Rahim NA, Hew WP, Che HS. “Comparison and analysis of single-phase transformerless grid-connected PV inverters”. IEEE Transactions on Power Electronics, 29(10), 5358-5369, 2014.
  • Zhang L, Sun K, Xing Y, Xing M. “H6 transformerless full-bridge PV grid-tied inverters”. IEEE Transactions on Power Electronics, 29(3), 1229-1238, 2014.
  • Li W, Gu Y, Luo H, Cui W, He X, Xia C. “Topology review and derivation methodology of single-phase transformerless photovoltaic inverters for leakage current suppression”. IEEE Transactions on Industrial Electronics, 62(7), 4537-4551, 2015.
  • Yang Y, Blaabjerg F, Wang H. “Low-voltage ride-through of single-phase transformerless photovoltaic inverters”. IEEE Transactions on Industry Applications, 50(3), 1942-1952, 2014.
  • Poliseno MC, Mastromauro RA, Liserre M. “Transformer-less photovoltaic (PV) inverters: A critical comparison”. 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15-20 September 2012.
  • Jedtberg H, Pigazo A, Liserre M, Buticchi G. “Analysis of the robustness of transformerless PV inverter topologies to the choice of power devices”. IEEE Transactions on Power Electronics, 32(7), 5248-5257, 2017.
  • Xiao HF, Zhang L, Li Y. “A zero-voltage-transition HERIC-type transformerless photovoltaic grid-connected inverter”. IEEE Transactions on Industrial Electronics, 64(2), 1222-1232, 2017.
  • Kaouane M, Boukhelifa A, Cheriti A. “Regulated output voltage double switch buck-boost converter for photovoltaic energy application”. International Journal of Hydrogen Energy, 41(45), 20847-20857, 2016.
  • Li S, Attou A, Yang Y, Geng D. “A maximum power point tracking control strategy with variable weather parameters for photovoltaic systems with DC bus”. Renewable Energy, 74, 478-488, 2015.
  • Khosroshahi A, Abapour M, Sabahi M. "Reliability evaluation of conventional and interleaved DC–DC boost converters”. IEEE Transactions on Power Electronics, 30(10), 5821-5828, 2015.
  • Kawa A, Penczek A, Piróg S. “DC-DC boost-flyback converter functioning as input stage for one phase low power grid-connected inverter”. Archives of Electrical Engineering, 63(3), 393-407, 2014.
  • Jung DY, Ji YH, Park SH, Jung YC, Won CY, “Interleaved soft-switching boost converter for photovoltaic power-generation system”. IEEE Transactions on Power Electronics, 26(4), 1137-1145, 2011.
  • Pires VF, Foito D, Baptista FRB, Silva FJ. “A photovoltaic generator system with a DC/DC converter based on an integrated boost-cuk topology”. Solar Energy, 136, 2016.
  • Banaei MR, Ardi H, Alizadeh R, Farakhor A. “Non-isolated multi-input–single-output DC/DC converter for photovoltaic power generation systems”. IET Power Electronics, 7(11), 2806-2816, 2014.
  • Khan MJ, Mathew L. “Different kinds of maximum power point tracking control method for photovoltaic systems: a review”. Archives of Computational Methods in Engineering, 24(4), 855-867, 2016.
  • Xiao W, El Moursi MS, Khan O, Infield D. “Review of grid-tied converter topologies used in photovoltaic systems”. IET Renewable Power Generation, 10(10), 1543-1551, 2016.
  • Xiao W, Ozog N, Dunford WG. “Topology study of photovoltaic interface for maximum power point tracking”. IEEE Transactions on Industrial Electronics, 54(3), 1696-1704, 2007.
  • Mei Y, Hu S, Lin L, Li W, He X, Cao F. “Highly efficient and reliable inverter concept-based transformerless photovoltaic inverters with tri-direction clamping cell for leakage current elimination”. IET Power Electronics, 9(8), 1675-1683, 2016.
  • Xiao HF, Lan K, Zhang L. “A quasi-unipolar SPWM full-bridge transformerless PV grid-connected inverter with constant common-mode voltage”. IEEE Transactions on Power Electronics, 30(6), 3122-3132, 2015.
  • Gu Y, Li W, Zhao Y, Yang B, Li C, He X. “Transformerless inverter with virtual DC bus concept for cost-effective grid-connected PV power systems”. IEEE Transactions on Power Electronics, 28(2), 793-805, 2013.
  • Mertens K. Photovoltaics: Fundamentals, Technology and Practice. West Sussex, United Kingdom, Wiley, 2014.
  • Islam M, Mekhilef S. “Analysis and comparison of different grid-tied transformerless inverters for PV system”. 2015 Saudi Arabia Smart Grid (SASG), Jeddah, Saudi Arabia, 7-9 December 2015.
  • Xiao H, Xie S, Chen Y, Huang R. “An optimized transformerless photovoltaic grid-connected inverter”. IEEE Transactions on Industrial Electronics, 58(5), 1887-1895, 2011.
  • Luo FL, Ye H. Power Electronics: Advanced Conversion Technologies. 2nd ed. Boca Raton/Florida, USA, CRC Press, 2017.
  • Sharma U, Singh B, Kumar S. "Intelligent grid interfaced solar water pumping system". IET Renewable Power Generation, 11(5), 614-624, 2017.