Tabakalı ve fonksiyonel olarak kademelendirilmiş küresel basınç kapları üzerine analiz

İç ya da dış basınca maruz kalan tabakalı ve fonksiyonel olarak kademelendirilmiş küresel basınç kapları için iki ayrı analitik model sunulmuştur. Her bir tabakasında elastisite modülü ve akma gerilmesinin kademeli bir şekilde değiştiği varsayılan n tabakalı basınç kabı için çift tekrarlamalı (rekursif) bir algoritma kullanılmıştır. Fonksiyonel olarak kademelendirilmiş basınç kabı için ise aynı mekanik özelliklerin radyal doğrultuda bir güç fonksiyonuna bağlı olarak değiştiği kabul edilmiştir. Bu heterojen (ve bunlara ilaveten homojen) basınç kaplarının aynı yük koşulları altındaki elastik davranışları karşılaştırılmıştır. Elastik limit yükü (von Mises akma kretierine göre) ile kademelendirme parametresi (fonksiyonel olarak kademelendirilmiş kap için) ve tabaka sayısı (tabakalı kap için) arasındaki ilişkiler incelenmiştir. Sonuç olarak, iki tabakalı basınç kabında ulaşılan elastik limit yükü ile kademelendirilmiş kabın elastik limit yükü arasındaki farkın %70 civarında olduğu fakat bu farkın 32 tabakalı kapta %2'ye inebildiği gözlenmiştir. Diğer bir yandan, kademelendirilmiş basınç kabında akma, yüke ve kademelendirme parametresine bağlı olarak iç ya da dış yüzeyde oluşabilirken, tabakalı basınç kabında akma (r-1)'inci arayüz koordinatında gerçekleşmektedir.

Analysis on multi-layered and functionally graded spherical pressure vessels

Analytical models are presented for both multi-layered and functionally graded thick walled spherical pressure vessels that are subjected to uniform internal or external pressure. A double recursive algorithm is used for the n-layered vessel of which the modulus of elasticity and yield stress are assumed to change stepwise from one layer to another. In the model intended for the continuously graded one, these properties are assumed to vary in radial direction according to a power law. The elastic behaviors under the same loading conditions for such heterogeneous vessels, and the homogeneous ones alike, have been compared. The relationships between the elastic limit load (according to the yield criterion of von Mises) and the grading indices or number of layers have been investigated. As a result, it has been observed that although the difference between elastic limit load of the functionally graded and that of 2-layered pressure vessels is 70%, this difference decreases to 2% for the 32-layered one. Moreover, yielding may emerge at the inner or outer surfaces of the graded vessel depending on the load and grading parameter however it occurs at (r-1)th interface coordinate in the multi-layered one.

___

  • Timoshenko SP, Goodier JN. Theory of Elasticity. 3rd ed. New York, USA, McGraw-Hill, 1970.
  • Gamer U. "The expansion of the elastic-plastic spherical shell with nonlinear hardening". International Journal of Mechanical Science, 30(6), 415-426, 1988.
  • Jiang W. "Hollow spheres subjected to sustained and variable loads". Journal of Engineering Mechanics, 120(6), 1343-1368, 1994.
  • Zhifei S, Taotao Z, Hongjun X. "Exact solutions of heterogeneous elastic hollow cylinders". Composite Structures, 79(1), 140-147, 2007.
  • Ghannad M, Rahimi GH, Nejad MZ. "Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials". Composites Part B: Engineering, 45(1), 388-396, 2013.
  • Bufler H. "The arbitrarily and the periodically laminated elastic hollow sphere: exact solutions and homogenization". Archives of Applied Mechanics, 68(9), 579-588, 1998.
  • Liu PF, Xing LJ, Zheng JY. "Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method". Composites Part B: Engineering, 56, 54-61, 2014.
  • Roy AK, Massard TN. "A design study of thick multilayered composite spherical pressure vessels". Journal of Reinforced Plastics and Composites, 11(5), 479-493, 1992.
  • Borisov AV. "Elastic analysis of multilayered thick-walled spheres under external load". Mechanika, 4(84), 28-32, 2010.
  • Lutz MP, Ferrari M. "Compression of a sphere with radially varying elastic moduli". Composites Engineering, 3(9), 873-884, 1993.
  • Tutuncu N, Ozturk M. "Exact solutions for stresses in functionally graded pressure vessels". Composites Part B: Engineering, 32(8), 683-686, 2001.
  • You LH, Zhang JJ, You XY. "Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials". International Journal of Pressure Vessels and Piping, 82(5), 347-354, 2005.
  • Guven U, Baykara C. "On stress distributions in functionally graded isotropic spheres subjected to internal pressure". Mechanics Research Communications, 28(3), 277-281, 2001.
  • Nejad MZ, Gharibi M. "Effect of material gradient on stresses of thick FGM spherical pressure vessels with exponentially-varying properties". Journal of Advanced Materials and Processing, 2(3), 39-46, 2014.
  • Bayat Y, Ghannad M, Torabi H. "Analytical and numerical analysis for the FGM thick sphere under combined pressure and temperature loading". Archives of Applied Mecha, 82(2), 229-242, 2012.
  • Chen YZ, Lin XY. "Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials". Computational Materials Science, 44(2), 581-587, 2008.
  • Karami K, Abedi M, Nejad MZ, Lotfian MH. "Elastic analysis of heterogeneous thick-walled spherical pressure vessels with parabolic varying properties". Frontiers of Mechanical Engineering, 7(4), 433-438, 2012.
  • Chen YZ, Lin XY. "An alternative numerical solution of thick-walled cylinders and spheres made of functionally graded materials". Computational Materials Science, 48(3), 640-647, 2010.
  • Atashipour SA, Sburlati R, Atashipour SR. "Elastic analysis of thick-walled pressurized spherical vessels coated with functionally graded materials". Meccanica, 49(12), 2965-2978, 2014.
  • Carrera E, Soave M. "Use of functionally graded material layers in a two-layered pressure vessel". Journal of Pressure Vessel Technology, 133(5), 1202-1212, 2011.
  • Akış T. "Elastoplastic analysis of functionally graded spherical pressure vessels". Computational Materials Science, 46(2), 545-554, 2009.
  • Kieback B, Neubrand A, Riedel H. "Processing techniques for functionally graded materials". Materials Science and Engineering: A, 362(1-2), 81-106, 2003.
  • Gandra J, Miranda R, Vilaca P, Velhinho A, Teixeira JP. "Functionally graded materials produced by friction stir processing". Journal of Materials Processing Technology, 211(11), 1659-1668, 2011.
  • Choi SH, Cheung HH. "A topological hierarchy-based approach to layered manufacturing of functionally graded multi-material objects". Computers in Industry, 60(5), 349-363, 2009.
  • Shin K, Natu H, Dutta D, Mazumder J. "A method for the design and fabrication of heterogeneous objects". Materials & Design, 24(5), 339-353, 2003.
  • Cannillo V, Lusvarghi L, Siligardi C, Sola A. "Effects of different production techniques on glass-alumina functionally graded materials". Ceramics International, 34(7), 1719-1727, 2008.
  • Fraldi M, Carannante F, Nunziante L. "Analytical solutions for n-phase functionally graded material cylinders under de saint venant load conditions: Homogenization and effects of poisson ratios on the overall stiffness". Composites Part B: Engineering, 45(1), 1310-1324, 2013.
  • Lannutti JJ. "Functionally graded materials: Properties, potential and design guidelines". Composites Engineering, 4(1), 81-94, 1994.
  • Elastic Properties and Young Modulus for some Materials. The Engineering ToolBox. “Standart Arama”. http://www.engineeringtoolbox.com/young-modulus-d_417.html (02.06.2016).